Beehive: Simple Distributed Programming in Software-Defined Networks

Soheil Hassas Yeganeh†
(Google Inc., University of Toronto)
Yashar Ganjali
(University of Toronto)

SOSR 2016

Michael Franz
SDN Seminar 2017
Abstract

- **Beehive**: Distributed control platform
 - Simple programming model
 - Asynchronous message handlers
 - State stored in dictionaries
- Centralized application → distributed system
- Runtime instrumentation
- Dynamically optimizing control plane
- Fault-tolerant
- Open source
- SDN controller on top
 - 200K OpenFlow

→ No external data store
Programming Model

A look under the hood
Programming Model
Programming Model

- single-threaded message handlers
 - general purpose programming language
 - triggered by asynchronous messages
 - can emit further messages

- dictionaries are transactional, replicated and persistent

- Inter-Dependencies
 - Messages
 - Dictionary access

- Consistent Concurrency
 - Centralized → distributed
 - State synchronisation
Control Platform

What about the *bees* and *hives*?
Control Platform

- **Hive:** controller instance

- **Bee:** light-weight thread of execution
 - Owns **cells** (keys)
 - **Colonies:** Replication
Control Platform

- Find the corresponding *bee* for a message handler
 - *Map* function
 - Automatically generated by compiler
 - Used keys
 - *Queen bee*: message router
Control Platform

- Transactions
 - Rcv functions transactional
 - Dictionary modifications
 - Emitted messages

- Runtime Instrumentation
 - Resource consumption
 - Exchanged messages

- Optimization
 - Automatic placement
 - Migrate bees
SDN Control Platform

Can do – Kandoo
SDN Control Platform

- SDN Controller Suite
 - Network object model (NOM)
 - Triggers
 - Paths

- Pollers
 - Consolidator: Discrepancy
 - Monitor: Triggers
Fault-Tolerance

https://github.com/kandoo/beehive-netctrl
Fault-Tolerance

(a)

(b)

Latency (ms)

Disconnected

Optimized

Time (sec)
Scalability

![Scalability Graph]

Replication
- Beehive-0
- Beehive-1
- Beehive-3
- Beehive-5
- ONOS-0
- ONOS-1
- ONOS-3
- ONOS-5

TPut (msg/sec) vs **Number of Nodes**
Discussion
Discussion / Related Work

- :-) Analogy / pictorially
- :-) Simplicity
- :-) Instrumentation / automatic optimization
- :-) scalability graph

- Raft (Election / Consensus)

- General-purpose programming language
- Persistence / Consistency
- Beehive vs. ONOS
- Automatic placement (Greedy heuristic)
Thank you …

- Questions?