
Fall Term 2012

SYSTEMS PROGRAMMING AND COMPUTER ARCHITECTURE
Assignment 11: Memory management

Assigned on: 13th Dec 2012
Due by: 20th Dec 2012

1 Implicit free lists

• Determine the block sizes and header values that would result from the following sequence
of malloc requests. Assumptions: (1) The allocator maintains a double-word alignment and
uses an implicit free list with the block format from Figure 1. (2) Block sizes are rounded
up to the nearest multiple of eight bytes.

Block size

Payload
(allocated block only)

a = 1: Allocated
a = 0: Free

The block size includes
the header, payload, and
any padding.

0 0 a

031 123

malloc returns a
pointer to the beginning

of the payload

Padding (optional)

Header

Figure 1: Format of a simple heap block for implicit free lists.

Request Block size (decimal bytes) Block header (hex)

malloc(1)

malloc(5)

malloc(12)

malloc(13)

• Determine the minimum block size for each of the following combinations of alignment
requirements and block formats. Assumptions: Implicit free list, zero-sized payloads are not
allowed, and headers and footers are stored in four-byte words.

Alignment Allocated block Free block Minimum block size (bytes)

Single-word Header and footer Header and footer

Single-word Header, but no footer Header and footer

Double-word Header and footer Header and footer

Double-word Header, but no footer Header and footer

2 Dynamic memory allocation

Consider a sequence of memory allocator interactions on an IA32:

int *p = (int*)malloc(2*sizeof(int));

char *q = (char*)malloc(sizeof(char));

char *r = (char*)malloc(sizeof(char));

float *s = (float*)malloc(2*sizeof(float));

char *t = (char*)malloc(sizeof(char));

int *v = (int*)malloc(sizeof(int));

/* --> (1) */

free(v);

free(r);

free(s);

/* --> (2) */

int *u = (int*)malloc(3*sizeof(int));

/* --> (3) */

For the following questions, make the following assumptions:

• The memory allocator uses an implicit free list to manage the space. A block in the list
consists of a one-word header, the payload and possibly some additional padding. The
header encodes the block size (including the header and any padding) as well as whether the
block is allocated (1) or free (0).

• The memory allocator maintains double-word alignment (i.e., the address returned by the
allocator is always double-word aligned). One word has 4 bytes.

• The heap has a total size of 80 bytes and starts at address 0x0806ff00.

• The last word of the heap is occupied by a dummy header marking the end of the free list.

• The allocator uses the first-fit policy.

• The size of data types (bytes):

sizeof(int)=4, sizeof(char)=1, sizeof(float)=4

a) Provide a picture of the heap after the above requests are processed until point (1) is
reached. Show which bytes are allocated and which ones are free, and show the headers
as appropriate. Also illustrate the pointers returned by malloc. You can use the following
figures; each box corresponds to 1 word (4 bytes).

Use this space for a first draft:

2

0
1

Your final solution goes here:

0
1

b) Provide a picture of the heap after the above requests are processed until point (2) is reached.
Assume that freed blocks are coalesced with adjacent free blocks.

Draft:

0
1

Solution:

0
1

c) Provide a picture of the heap after the above requests are processed until point (3) is reached.

Draft:

0
1

Solution:

0
1

d) What is the internal fragmentation (total number of bytes) after the entire sequence of
allocator requests has been processed? (Recall the the internal fragmentation is the sum of
the differences between the sizes of the allocation blocks and their payloads.)

e) What is the peak memory utilization? (Recall that the peak memory utilization is the
maximum of the sum of the payloads of all allocated blocks divided by the heap size.)

3

f) Give the smallest possible allocator request that (if made after all the above requests are
processed) would cause external fragmentation.

g) Assume that the heap size is increased to 104 bytes and the memory allocator uses an
implicit list with boundary tags (where a footer is placed at the end of each block which
is a replicate of the corresponding header). Provide a picture of the heap after the above
requests are processed until point (3) is reached.

0
1

0
1

0
1

0
1

3 Segregated free lists

This question is about a memory allocator with segregated free lists, i.e. multiple free lists where
each list holds blocks within a particular size class (e.g. from 17 to 32 bytes). Assume that the
free list for each size class contains same-sized blocks, each the size of the largest element of the
size class.

• What are the advantages of this way to organize free blocks?

• What disadvantages exist?

• Describe a reference pattern that results in severe external fragmentation in this allocator.

4

4 Find the bugs!

Each of the following code snippets contains at least one memory-related bug. Find and explain
it and propose a correct solution.

a) int main() {

int age;

printf("How old are you? ");

scanf("%d", age);

printf("You are %d years old.\n", age);

}

b) #include <stdlib.h>

void f(int n) {

int *x = (int *) malloc(n * sizeof(int));

// work with x

return;

}

c) #include <stdlib.h>

/* calculates y = Ax */

int *matvec(int **A, int *x, int n) {

int i, j;

int *y = (int *) malloc(n * sizeof(int));

for(i = 0; i < n; i++) {

for(j = 0; j < n; j++) {

y[i] += A[i][j] * x[j];

}

}

return y;

}

Hand In Instructions

You do not need to hand this assignment in. We will publish the sample solution on the due date.

5

