Lecture 2: Integers
Computer Architecture and Systems Programming
(252-0061-00)

Timothy Roscoe
Herbstsemester 2012
Last Time: Bits & Bytes

- Bits, Bytes, Words
- Decimal, binary, hexadecimal representation
- Virtual memory space, addressing, byte ordering
- Boolean algebra
- Bit versus logical operations in C
Today: Integers

• Representation: unsigned and signed
• Conversion, casting
• Expanding, truncating
• Addition, negation, multiplication, shifting
• Summary
Encoding integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

- A C `short` is 2 bytes long

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

- Sign bit
 - For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative
Encoding example (cont.)

\[x = 15213: \quad 00111011 \ 01101101 \]
\[y = -15213: \quad 11000100 \ 10010011 \]

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Sum</td>
<td>15213</td>
<td>-15213</td>
</tr>
</tbody>
</table>
Numeric ranges

• Unsigned values
 – UMin = 0
 • 000...0
 – UMax = $2^w - 1$
 • 111...1

• Two’s complement values
 – Tmin = -2^{w-1}
 • 100...0
 – Tmax = $2^{w-1} - 1$
 • 011...1

<table>
<thead>
<tr>
<th>Values for w=16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
</tr>
<tr>
<td>UMax</td>
</tr>
<tr>
<td>Tmax</td>
</tr>
<tr>
<td>Tmin</td>
</tr>
<tr>
<td>-1</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
Values for different word sizes

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

- **Observations**
 - $|T_{\text{Min}}| = T_{\text{Max}} + 1$
 - Asymmetric range
 - $U_{\text{Max}} = 2 \times T_{\text{Max}} + 1$

- **C Programming**
 - `#include <limits.h>`
 - Declares constants, e.g.,
 - `ULONG_MAX`
 - `LONG_MAX`
 - `LONG_MIN`
 - Values platform specific
Unsigned & signed numeric values

<table>
<thead>
<tr>
<th>X</th>
<th>B2U(X)</th>
<th>B2T(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>

- **Equivalence**
 - Same encodings for nonnegative values

- **Uniqueness**
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding

- ⇒ **Can invert mappings**
 - $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
 - $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two’s comp integer
Today: Integers

• Representation: unsigned and signed
• Conversion, casting
• Expanding, truncating
• Addition, negation, multiplication, shifting
• Summary
Mapping between signed & unsigned

- Mappings between unsigned and two’s complement numbers:
 keep bit representations and reinterpret
Mapping signed ↔ unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Mapping signed ↔ unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>

Signed values range from -8 to -1, and unsigned values range from 0 to 15. The mapping is achieved by adding 16 to the signed values before mapping to the unsigned range.
Relation between signed & unsigned

Two's complement

Unsigned

Maintain same bit pattern

\[ux = \begin{cases}
 x & x \geq 0 \\
 x + 2^w & x < 0
\end{cases} \]

Large negative weight becomes

Large positive weight
Conversion visualized

• 2’s Comp. → Unsigned
 – Ordering inversion
 – Negative → big positive

2’s complement range

\[
\begin{align*}
T_{\text{Max}} & \rightarrow U_{\text{Max}} - 1 \\
T_{\text{Max} + 1} & \rightarrow 0 \\
T_{\text{Max}} & \rightarrow \text{unsigned range}
\end{align*}
\]
Signed vs. unsigned in C

• Constants
 – By default are considered to be signed integers
 – Unsigned if have “U” as suffix:
    ```
    0U
    4294967259U
    ```

• Casting
 – Explicit casting between signed & unsigned same as U2T and T2U:
    ```
    int tx, ty;
    unsigned ux, uy;
    tx = (int) ux;
    uy = (unsigned) ty;
    ```
 – Implicit casting also occurs via assignments and procedure calls
    ```
    tx = ux;
    uy = ty;
    ```
Casting surprises

• Expression evaluation
 – If mix unsigned and signed in single expression,
 signed values implicitly cast to unsigned
 – Including comparison operations <, >, ==, <=, >=
 – Examples for W = 32: TMIN = -2,147,483,648, TMAX = 2,147,483,647

<table>
<thead>
<tr>
<th>Constant 1</th>
<th>Constant 2</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>Unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>Signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>Unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483647-1</td>
<td>></td>
<td>Signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483647-1</td>
<td><</td>
<td>Unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>Signed</td>
</tr>
<tr>
<td>(unsigned)-1</td>
<td>-2</td>
<td>></td>
<td>Unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>Unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Code security example

```c
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}
```

• Similar to code found in FreeBSD’s implementation of `getpeername`
• There are legions of smart people trying to find vulnerabilities in programs
Typical usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, MSIZE);
 printf("%s\n", mybuf);
}
Malicious usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, -MSIZE);
 ...
Summary: casting signed ↔ unsigned

• Bit pattern is maintained
• But reinterpreted
• Can have unexpected effects: adding or subtracting 2^w

• Expression containing signed and unsigned int
 – int is cast to unsigned!!
Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
Sign extension

• Task:
 – Given w-bit signed integer x
 – Convert it to w+k-bit integer with same value

• Rule:
 – Make k copies of sign bit:
 – $X' = x_{w-1}, ..., x_{w-1}, x_{w-1}, x_{w-2}, ..., x_0$

\[X\] \Rightarrow X' with k copies of MSB

\[\text{w} \quad \text{w+k}\]
Sign extension example

```
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>00 00</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>

- Converting from smaller to larger integer data type
- C automatically performs sign extension
Summary:
Expanding, truncating: basic rules

• Expanding (e.g., short int to int)
 – Unsigned: zeros added
 – Signed: sign extension
 – Both yield expected result

• Truncating (e.g., unsigned to unsigned short)
 – Unsigned/signed: bits are truncated
 – Result reinterpreted
 – Unsigned: mod operation
 – Signed: similar to mod
 – For small numbers yields expected behaviour
Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
Negation: complement & increment

- Claim: the following holds for 2’s complement:
 \[\sim x + 1 = -x \]

- Complement
 - Observation: \(\sim x + x = 1111\ldots111 = -1 \)

<table>
<thead>
<tr>
<th>x</th>
<th>1 0 0 1 1 1 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ (\sim x)</td>
<td>0 1 1 0 0 0 1 0</td>
</tr>
<tr>
<td>(\sim x)</td>
<td>0 1 1 0 0 0 1 0</td>
</tr>
<tr>
<td>(-1)</td>
<td>1 1 1 1 1 1 1 1</td>
</tr>
</tbody>
</table>

- Complete proof?
Complement & increment examples

$x = 15213$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>$\sim x$</td>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
</tr>
<tr>
<td>$\sim x + 1$</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

$x = 0$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
<tr>
<td>~ 0</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>$\sim 0 + 1$</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Unsigned addition

Operands: \(w \) bits

True sum: \(w+1 \) bits

Discard carry: \(w \) bits

- Standard addition function
 - Ignores carry output
- Implements modular arithmetic

\[
s = UAdd_w(u, v) = u + v \mod 2^w
\]

\[
UAdd_w(u, v) = \begin{cases}
 u + v, & \text{if } u + v < 2^w \\
 u + v - 2^w, & \text{if } u + v \geq 2^w
\end{cases}
\]
Visualizing (mathematical) integer addition

- Integer addition
 - 4-bit integers \(u, v \)
 - Compute true sum \(\text{Add}_4(u, v) \)
 - Values increase linearly with \(u \) and \(v \)
 - Forms planar surface
Visualizing unsigned addition

- Wraps around
 - If true sum $\geq 2^w$
 - At most once

True Sum
2^{w+1}
2^w
0
Modular Sum

Overflow

$U\text{Add}_4(u, v)$

Overflow
Mathematical properties

• Modular addition forms an Abelian group
 – Closed under addition
 \[0 \leq U\text{Add}_w(u, v) \leq 2^w - 1 \]
 – Commutative
 \[U\text{Add}_w(u, v) = U\text{Add}_w(v, u) \]
 – Associative
 \[U\text{Add}_w(t, U\text{Add}_w(u, v)) = U\text{Add}_w(U\text{Add}_w(t, u), v) \]
 – 0 is additive identity
 \[U\text{Add}_w(u, 0) = u \]
 – Every element has additive inverse
 Let: \[U\text{Comp}_w(u) = 2^w - u \]
 Then: \[U\text{Add}_w(u, U\text{Comp}_w(u)) = 0 \]
Two’s complement addition

Operands: \(w \) bits

\[u \]
\[+ \]
\[v \]

True sum: \(w+1 \) bits

\[u + v \]

Discard carry: \(w \) bits

\[TAdd_w(u, v) \]

- \(TAdd \) and \(UAdd \) have identical bit-level behavior
 - Signed vs. unsigned addition in C:

```c
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v;
```

- Will give: \(s == t \)
TAdd overflow

- **Functionality**
 - True sum requires $w+1$ bits
 - Drop off MSB
 - Treat remaining bits as 2’s comp. integer

![Diagram showing true sum and TAdd result with overflow handling.](image-url)
Visualizing 2’s compl. addition

- **Values**
 - 4-bit two’s comp.
 - Range from -8 to +7

- **Wraps around**
 - If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
 - If sum $< -2^{w-1}$
 - Becomes positive
 - At most once
Characterizing TAdd

- **Functionality**
 - True sum requires $w+1$ bits
 - Drop off MSB
 - Treat remaining bits as 2’s comp. integer

TAdd(u, v)

\[
TAdd(u, v) = \begin{cases}
 u + v + 2^w & \text{if } u + v < TMin_w \\
 u + v & \text{if } TMin_w \leq u + v \leq TMax_w \\
 u + v - 2^w & \text{if } TMax_w < u + v
\end{cases}
\]

(Neg. overflow)
(Pos. overflow)
Mathematical properties of TAdd

• Group isomorphic to unsigneds with UAdd
 • Since both have identical bit patterns
 \[TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v))) \]

• 2’s complement under TAdd forms a group
 • Closed, commutative, associative,
 • 0 is additive identity
 • Every element has additive inverse

\[TComp_w(u) = \begin{cases}
- u & u \neq TMin_w \\
TMin_w & u = TMin_w
\end{cases} \]
Multiplication

• Computing exact product of w-bit numbers x, y
 – Either signed or unsigned

• Ranges
 – Unsigned (up to 2^w bits):
 \[0 \leq x \times y \leq (2^w - 1)2 = 2^{2w} - 2^{w+1} + 1 \]
 – Two’s complement min (up to 2^{w-1} bits):
 \[x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1} \]
 – Two’s complement max (up to 2^w bits, but only for $(TMin_w)^2$):
 \[x \times y \leq (-2^{w-1})^2 = 2^{2w-2} \]

• Maintaining exact results
 – Would need to keep expanding word size with each product computed
 – Done in software by “arbitrary precision” arithmetic packages
Unsigned multiplication in C

Operands: w bits

True product: $2 \cdot w$ bits

Discard w bits: w bits

- Standard multiplication function
 - Ignores high order w bits
- Implements modular arithmetic

$$UMult_w(u, v) = u \cdot v \mod 2^w$$
Code security example #2

- SUN XDR library
 - Widely used library for transferring data between machines

```c
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
```

```c
malloc(ele_cnt * ele_size)
```
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
 /*
 * Allocate buffer for ele_cnt objects, each of ele_size bytes
 * and copy from locations designated by ele_src
 */
 void *result = malloc(ele_cnt * ele_size);
 if (result == NULL)
 /* malloc failed */
 return NULL;
 void *next = result;
 int i;
 for (i = 0; i < ele_cnt; i++) {
 /* Copy object i to destination */
 memcpy(next, ele_src[i], ele_size);
 /* Move pointer to next memory region */
 next += ele_size;
 }
 return result;
}
XDR vulnerability

\texttt{malloc(ele_cnt * ele_size)}

• What if:
 \begin{itemize}
 \item \texttt{ele_cnt} = 2^{20} + 1
 \item \texttt{ele_size} = 4096 = 2^{12}
 \item Allocation = ??
 \end{itemize}

• How can I make this function secure?
Signed multiplication in C

Operands: w bits

True product: $2w$ bits

Discard w bits: w bits

- Standard multiplication function
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same
Power-of-2 multiply with shift

• Operation
 – \(u \ll k \) gives \(u \times 2^k \)
 – Both signed and unsigned

Operands: \(w \) bits

\[
\begin{array}{c}
\text{True product: } w+k \text{ bits} \\
\text{Discard } k \text{ bits: } w \text{ bits}
\end{array}
\]

Examples
 – \(u \ll 3 \) \(== \) \(u \times 8 \)
 – \(u \ll 5 - u \ll 3 \) \(== \) \(u \times 24 \)
 – Most machines shift and add faster than multiply
 • Compiler generates this code automatically
Compiled multiplication code

C Function

```c
int mul12(int x)
{
    return x*12;
}
```

Compiled arithmetic operations

```
leal (%eax,%eax,2), %eax
sall $2, %eax
```

Explanation

```
t <- x+x*2
return t <<< 2;
```

- C compiler automatically generates shift/add code when multiplying by constant
Unsigned power-of-2 divide w/ shift

- Quotient of unsigned by power of 2
 - \(u \gg k \) gives \(\lfloor u / 2^k \rfloor \)
 - Uses logical shift

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D</td>
</tr>
<tr>
<td>(x \gg 1)</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6</td>
</tr>
<tr>
<td>(x \gg 4)</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6</td>
</tr>
<tr>
<td>(x \gg 8)</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B</td>
</tr>
</tbody>
</table>
Compiled unsigned division code

C Function

```c
unsigned udiv8(unsigned x)
{
    return x/8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users: logical shift written as >>>

46
Signed power-of-2 divide w/ shift

- Quotient of Signed by Power of 2
 - $x >> k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when $u < 0$

$$
\begin{array}{c}
x
\end{array}
\begin{array}{c}
/2^k
\end{array}
\begin{array}{c}
x/2^k
\end{array}
\begin{array}{c}
{\text{Binary Point}}
\end{array}
$$

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>$y >> 1$</td>
<td>-7606.5</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>$y >> 4$</td>
<td>-950.8125</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>$y >> 8$</td>
<td>-59.4257813</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Correct power-of-2 divide

- Quotient of negative number by power of 2
 - We want \(\lfloor x/2^k \rfloor \) (round toward 0)
 - We compute it as \(\lfloor (x + 2^k - 1)/2^k \rfloor \)
 - In C: \((x + (1<<k)-1) >> k\)
 - Biases the dividend toward 0

- Case 1: No rounding

\[
\begin{array}{c}
\text{Dividend:} \\
+2^k - 1
\end{array}
\begin{array}{c}
\text{Divisor:} \\
/2^k
\end{array}
\begin{array}{c}
\left[u/2^k \right]
\end{array}
\begin{array}{c}
\text{Binary Point}
\end{array}
\]

\[
\begin{array}{c}
\text{u} \quad k
\end{array}
\begin{array}{c}
1 \cdots 0 \cdots 0 0
0 \cdots 0 0 1 \cdots 1 1
0 \cdots 0 1 0 \cdots 0 0
1 \cdots 1 1 1 \cdots 1 1
\end{array}
\]

Biasing has no effect
Correct power-of-2 divide (Cont.)

• Case 2: Rounding:

Dividend: \[u \]
\[+ 2^k - 1 \]

Divisor: \[\frac{u}{2^k} \]
\[\left\lfloor \frac{u}{2^k} \right\rfloor \]

Biasing adds 1 to final result

\[\frac{u}{2^k} \]

\[\left\lfloor \frac{u}{2^k} \right\rfloor \]
Compiled signed division code

C function

```c
int idiv8(int x)
{
    return x/8;
}
```

Compiled arithmetic operations

```asm
testl %eax, %eax
js   L4
L3:
sarl $3, %eax
ret
L4:
addl $7, %eax
jmp  L3
```

Explanation

```c
if x < 0
    x += 7;
# Arithmetic shift
return x >> 3;
```

- Uses arithmetic shift for int
- For Java users
 - Arith. shift written as >>
Arithmetic: basic rules

• Addition:
 – Unsigned/signed: Normal addition followed by truncate, same operation on bit level
 – Unsigned: addition mod 2^w
 • Mathematical addition + possible subtraction of 2^w
 – Signed: modified addition mod 2^w (result in proper range)
 • Mathematical addition + possible addition or subtraction of 2^w

• Multiplication:
 – Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
 – Unsigned: multiplication mod 2^w
 – Signed: modified multiplication mod 2^w (result in proper range)
Arithmetic: basic rules

• Unsigned ints, 2’s complement ints are isomorphic rings:
 \[\Rightarrow \text{isomorphism} = \text{casting} \]

• Left shift
 – Unsigned/signed: multiplication by \(2^k\)
 – Always logical shift

• Right shift
 – Unsigned: logical shift, \(\text{div} \ (\text{division} + \text{round to zero}) \text{ by } 2^k\)
 – Signed: arithmetic shift
 • Positive numbers: \(\text{div} \ (\text{division} + \text{round to zero}) \text{ by } 2^k\)
 • Negative numbers: \(\text{div} \ (\text{division} + \text{round away from zero}) \text{ by } 2^k\)
 Use biasing to fix
Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
Unsigned arithmetic

Unsigned multiplication with addition forms a commutative ring:

- Addition is a commutative group
- Closed under multiplication
 \[0 \leq \text{UMult}_w(u, v) \leq 2^w - 1 \]
- Multiplication is commutative
 \[\text{UMult}_w(u, v) = \text{UMult}_w(v, u) \]
- Multiplication is associative
 \[\text{UMult}_w(t, \text{UMult}_w(u, v)) = \text{UMult}_w(\text{UMult}_w(t, u), v) \]
- 1 is multiplicative identity
 \[\text{UMult}_w(u, 1) = u \]
- Multiplication distributes over addition
 \[\text{UMult}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UMult}_w(t, u), \text{UMult}_w(t, v)) \]
Two’s complement arithmetic

- Isomorphic algebras
 - Unsigned multiplication and addition
 - Truncating to \(w \) bits
 - Two’s complement multiplication and addition
 - Truncating to \(w \) bits

- Both form rings
 - Isomorphic to ring of integers mod \(2^w \)

- Comparison to (mathematical) integer arithmetic
 - Both are rings
 - True integers obey ordering properties, e.g.,
 \[
 u > 0 \Rightarrow u + v > v \\
 u > 0, v > 0 \Rightarrow u \cdot v > 0
 \]
 - These properties are not obeyed by two’s complement arithmetic
 \[
 T_{\text{Max}} + 1 = T_{\text{Min}} \\
 15213 \times 30426 = -10030
 \] (e.g. 16-bit words)
Why should I use unsigned?

- **Don’t** use just because the number is non-negative
 - Easy to make mistakes
    ```c
    unsigned i;
    for (i = cnt-2; i >= 0; i--)
        a[i] += a[i+1];
    ```
 - Can be very subtle
 - `#define DELTA sizeof(int)`
 - `int i;`
 - `for (i = CNT; i-DELTA >= 0; i-= DELTA)`
 - ...
- **Do** use when performing modular arithmetic
 - Multiprecision arithmetic
- **Do** use when using bits to represent sets
 - Logical right shift, no sign extension
Next time: Floating Point

• Background: Fractional binary numbers
• IEEE floating point standard: Definition
• Example and properties
• Rounding, addition, multiplication
• Floating point in C