Today: Integers

• Representation: unsigned and signed
• Conversion, casting
• Expanding, truncating
• Addition, negation, multiplication, shifting
• Summary

Encoding integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

• A C `short` is 2 bytes long

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93 11000100 10010011</td>
</tr>
</tbody>
</table>

• Sign bit
 - For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Encoding example (cont.)

\[x = 15213: \quad 00111011 \quad 01101101 \]
\[y = -15213: \quad 11000100 \quad 10010011 \]

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Sum</td>
<td>15213</td>
<td>-15213</td>
</tr>
</tbody>
</table>

Numeric ranges

• Unsigned values
 - \(UMin = 0 \)
 - 000...0
 - \(UMax = 2^w - 1 \)
 - 111...1

• Two’s complement values
 - \(TMin = -2^{w-1} \)
 - 100...0
 - \(TMax = 2^{w-1} - 1 \)
 - 011...1

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF</td>
</tr>
<tr>
<td>TMax</td>
<td>32767</td>
<td>7F FF</td>
</tr>
<tr>
<td>TMin</td>
<td>-32768</td>
<td>80 00</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
</tr>
<tr>
<td>Values for (w=16)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Values for different word sizes

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

- | TMin | = | Tmax + 1 |
 - | Asymmetric range |
 - | UMax = 2 * Tmax + 1 |

- Observations
 - | TMin | = | Tmax + 1 |
 - | Asymmetric range |
 - | UMax = 2 * Tmax + 1 |

- C Programming
 - | #include <limits.h> |
 - | Declares constants, e.g., |
 - | ULONG_MAX |
 - | LONG_MAX |
 - | LONG_MIN |
 - Values platform specific

Unsigned & signed numeric values

<table>
<thead>
<tr>
<th>X</th>
<th>B2(U)(X)</th>
<th>B2(T)(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>

- Equivalence
 - | Same encodings for nonnegative values |
- Uniqueness
 - | Every bit pattern represents unique integer value |
 - | Each representable integer has unique bit encoding |
 - | Can invert mappings |
 - | U2B(x) = B2U⁻¹(x) |
 - | Bit pattern for unsigned integer |
 - | T2B(x) = B2T⁻¹(x) |
 - | Bit pattern for two’s comp integer |

Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Mapping between signed & unsigned

Two's complement

<table>
<thead>
<tr>
<th>x</th>
<th>T2U</th>
<th>B2U</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>T2B</td>
<td>B2T</td>
</tr>
</tbody>
</table>

- Maintain same bit pattern

Unsigned

<table>
<thead>
<tr>
<th>x</th>
<th>U2B</th>
<th>B2T</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>U2T</td>
<td>B2T</td>
</tr>
</tbody>
</table>

- Maintain same bit pattern

- Mappings between unsigned and two's complement numbers: keep bit representations and reinterpret

Mapping signed ↔ unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>

Mapping signed ↔ unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>

+16
Relation between signed & unsigned

Two's complement

T2U

T2B

B2U

Maintain same bit pattern

Signed vs. unsigned in C

- Constants
 - By default are considered to be signed integers
 - Unsigned if have "U" as suffix:

```
0U
4294967299U
```

- Casting
 - Explicit casting between signed & unsigned same as U2T and T2U:

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

 - Implicit casting also occurs via assignments and procedure calls

```
tx = ux;
uy = ty;
```

Conversion visualized

- 2's Comp. → Unsigned
 - Ordering inversion
 - Negative → big positive

Signed vs. unsigned in C

- Casting surprises

 - Expression evaluation
 - If mix unsigned and signed in single expression, signed values implicitly cast to unsigned
 - Including comparison operations <, >, ==, <=, >=

```
Constant 1         Constant 2         Relation         Evaluation

0                0U                    ==                Unsigned
-1               0U                    <                  Signed
-1                2147483647U        >                  Signed
2147483647U      -2147483647-1      >                  Signed
-1                -2                   >                  Signed
(unsigned)-1      -2                   >                  Signed
2147483647U      2147483648U        <                  Signed
2147483647U      (int) 2147483648U   >                  signed
```

Code security example

- Similar to code found in FreeBSD's implementation of `getpeername`
- There are legions of smart people trying to find vulnerabilities in programs

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}
```

Typical usage

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}
```

```
#define MSIZE 528
void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf("%s\n", mybuf);
}
```
Malicious usage

```c
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];
/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}
```

```c
#define MSIZE 528
void getstuff() { 
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, -MSIZE);
    ... 
}
```

Summary: casting signed ↔ unsigned
- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Today: Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Sign extension
- Task:
 - Given w-bit signed integer x
 - Convert it to w-k-bit integer with same value
- Rule:
 - Make k copies of sign bit:
 - $x' = x_{w-1}, x_{w-2}, ..., x_0$
 - k copies of MSB

Sign extension example

```c
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>00111101 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>00000000 00000000 00000000 00000000 00111010 01101010</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF 00111010 01101010</td>
</tr>
</tbody>
</table>

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Summary:
Expanding, truncating: basic rules
- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Signed: mod operation
- Signed: similar to mod
 - For small numbers yields expected behaviour
Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Negation: complement & increment

- Claim: the following holds for 2’s complement:
 \[\neg x + 1 = -x \]
- Complement
 - Observation:
 \[\neg x + x = 111\ldots11 == -1 \]

Complement & increment examples

\[x = 15213 \]

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
</tr>
<tr>
<td>\neg x</td>
<td>-15214</td>
<td>C4 92</td>
</tr>
<tr>
<td>\neg x + 1</td>
<td>-15213</td>
<td>C4 93</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
</tr>
</tbody>
</table>

\[x = 0 \]

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
</tr>
<tr>
<td>\neg 0</td>
<td>-1</td>
<td>FF FF</td>
</tr>
<tr>
<td>\neg 0 + 1</td>
<td>0</td>
<td>00 00</td>
</tr>
</tbody>
</table>

Unsigned addition

- Standard addition function
 - Ignores carry output
- Implements modular arithmetic
 \[s = \text{UAdd}_w(u, v) = u + v \mod 2^w \]
 \[\text{UAdd}_w(u, v) = \begin{cases} u + v, & u + v < 2^w \
 u + v - 2^w, & u + v \geq 2^w \end{cases} \]

Visualizing (mathematical) integer addition

- Integer addition
 - 4-bit integers \(u, v \)
 - Compute true sum \(\text{Add}_4(u, v) \)
 - Values increase linearly with \(u \) and \(v \)
 - Forms planar surface

Visualizing unsigned addition

- Wraps around
 - If true sum \(\geq 2^w \)
 - At most once
Mathematical properties

- Modular addition forms an Abelian group
 - **Closed** under addition
 \[0 \leq UAdd_w(u, v) \leq 2^w - 1 \]
 - **Commutative**
 \[UAdd_w(u, v) = UAdd_w(v, u) \]
 - **Associative**
 \[UAdd_w(t, UAdd_w(u, v)) = UAdd_w(UAdd_w(t, u), v) \]
 - 0 is additive **identity**
 \[UAdd_w(u, 0) = u \]
 - Every element has additive **inverse**
 Let: \[UComp_w(u) = 2^w - u \]
 Then: \[UAdd_w(u, UComp_w(u)) = 0 \]

Two’s complement addition

- **Operands**: \(w \) bits
- **True sum**: \(w+1 \) bits
- **Discard carry**: \(w \) bits

\[u + v \]
\[TAdd_w(u, v) \]

- **TAdd and UAdd have identical bit-level behavior**
 - Signed vs. unsigned addition in C:
    ```c
    int s, t, u, v;
    s = (int) ((unsigned) u + (unsigned) v);
    t = u + v;
    s == t
    ```

TAdd overflow

- **Functionality**
 - True sum requires \(w+1 \) bits
 - Drop off MSB
 - Treat remaining bits as 2’s comp. integer

Visualizing 2’s compl. addition

- **Values**
 - 4-bit two’s comp.
 - Range from -8 to +7
- **Wraps around**
 - If sum \(\geq 2^w - 1 \)
 - Becomes negative
 - At most once
 - If sum \(< -2^w - 1 \)
 - Becomes positive
 - At most once

Characterizing TAdd

- **Functionality**
 - True sum requires \(w+1 \) bits
 - Drop off MSB
 - Treat remaining bits as 2’s comp. integer

Mathematical properties of TAdd

- **Group isomorphic to unsigneds with UAdd**
 - Since both have identical bit patterns
 \[TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v))) \]
- **2’s complement under TAdd forms a group**
 - Closed, commutative, associative,
 - 0 is additive identity
 - Every element has additive inverse
 \[TComp_w(u) = \begin{cases} -u & u < TMin_w \\ u & u = TMin_w \end{cases} \]
Multiplication

• Computing exact product of w-bit numbers x, y
 – Either signed or unsigned

• Ranges
 – Unsigned (up to 2^w bits):
 $0 \leq x \cdot y \leq (2^w - 1)2 = 2^{2w} - 2^{w+1} + 1$
 – Two’s complement min (up to 2^{w-1} bits):
 $x \cdot y \geq (-2^{w-1}) \cdot (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}$
 – Two’s complement max (up to 2^w bits, but only for $(\text{Min}_w)^2$):
 $x \cdot y \leq (-2^{w-1})^2 = 2^{2w-2}$

• Maintaining exact results
 – Would need to keep expanding word size with each product computed
 – Done in software by “arbitrary precision” arithmetic packages

Unsigned multiplication in C

Operands: w bits

True product: $2^w \cdot u \cdot v$

Discard w bits: w bits

• Standard multiplication function
 – Ignores high order w bits
 – Implements modular arithmetic

$$UMult_w(u, v) = u \cdot v \mod 2^w$$

Code security example #2

• SUN XDR library
 – Widely used library for transferring data between machines

```c
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
    /* Allocate buffer for ele_cnt objects, each of ele_size bytes */
    void* result = malloc(ele_cnt * ele_size);
    if (result == NULL) /* malloc failed */
        return NULL;
    void* next = result;
    int i;
    for (i = 0; i < ele_cnt; i++) {
        /* Copy object i to destination */
        /* Move pointer to next memory region */
        next += ele_size;
        return result;
    }
}
```

XDR code

```c
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
    /* Allocate buffer for ele_cnt objects, each of ele_size bytes */
    void* result = malloc(ele_cnt * ele_size);
    if (result == NULL) /* malloc failed */
        return NULL;
    void* next = result;
    int i;
    for (i = 0; i < ele_cnt; i++) {
        /* Copy object i to destination */
        /* Move pointer to next memory region */
        next += ele_size;
    }
    return result;
}
```

XDR vulnerability

```c
malloc(ele_cnt * ele_size)
```

• What if:
 – ele_cnt = $2^{20} + 1$
 – ele_size = 4096, 2^{12}
 – Allocation = ??

• How can I make this function secure?

Signed multiplication in C

Operands: w bits

True product: $2^w \cdot u \cdot v$

Discard w bits: w bits

• Standard multiplication function
 – Ignores high order w bits
 – Some of which are different for signed vs. unsigned multiplication
 – Lower bits are the same
Power-of-2 multiply with shift

- Operation
 \[u \ll k \] gives \[u \times 2^k \]
 - Both signed and unsigned

<table>
<thead>
<tr>
<th>Operands: (w) bits</th>
<th>True product: (w \times 2^k) with (k) bits</th>
<th>Discard (k) bits: (w) bits</th>
</tr>
</thead>
</table>
| \[u \] | \[\ldots \ ld
Correct power-of-2 divide (Cont.)

- Case 2: Rounding:

<table>
<thead>
<tr>
<th>Dividend:</th>
<th>Divisor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{u}{2^k}$</td>
<td>$/2^k$</td>
</tr>
</tbody>
</table>

Biasing adds 1 to final result

Compiled signed division code

C function

```c
int idiv8(int x)
{
    return x/8;
}
```

Compiled arithmetic operations

```c
testl %eax, %eax
js L4
L3:
sarl $3, %eax
ret
L4:
addl $7, %eax
jmp L3
```

- Uses arithmetic shift for int
- For Java users
 - Arith. shift written as `>>`

Arithmetic: basic rules

- Addition:
 - Unsigned/signed: Normal addition followed by truncate, same operation on bit level
 - Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
 - Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

- Multiplication:
 - Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
 - Unsigned: multiplication mod 2^w
 - Signed: modified multiplication mod 2^w (result in proper range)

Arithmetic: basic rules

- Unsigned ints, 2’s complement ints are isomorphic rings:
 \Rightarrow isomorphism = casting

- Left shift
 - Unsigned/signed: multiplication by 2^k
 - Always logical shift

- Right shift
 - Unsigned: logical shift, div (division + round to zero) by 2^k
 - Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 - Use biasing to fix

Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Unsigned arithmetic

Unsigned multiplication with addition forms a commutative ring:

- Addition is a commutative group
- Closed under multiplication
 $0 \leq U\text{Mult}_w(u,v) \leq 2^w - 1$
- Multiplication is commutative
 $U\text{Mult}_w(u,v) = U\text{Mult}_w(v,u)$
- Multiplication is associative
 $U\text{Mult}_w(t, U\text{Mult}_w(u,v)) = U\text{Mult}_w(U\text{Mult}_w(t,u),v)$
- 1 is multiplicative identity
 $U\text{Mult}_w(u,1) = u$
- Multiplication distributes over addition
 $U\text{Mult}_w(t, U\text{Add}_w(u,v)) = U\text{Add}_w(U\text{Mult}_w(t,u),U\text{Mult}_w(t,v))$
Two’s complement arithmetic

- Isomorphic algebras
 - Unsigned multiplication and addition
 - Truncating to w bits
 - Two’s complement multiplication and addition
 - Truncating to w bits
- Both form rings
 - Isomorphic to ring of integers mod \(2^w\)
- Comparison to (mathematical) integer arithmetic
 - Both are rings
 - True integers obey ordering properties, e.g.,
 \[u > 0 \Rightarrow u + v > v \]
 \[u > 0, v > 0 \Rightarrow u \cdot v > 0 \]
 - These properties are not obeyed by two’s complement arithmetic
 \[T_{\text{Max}} + 1 = T_{\text{Min}} \]
 \[15213 \times 30426 = -10030 \] (e.g. 16-bit words)

Why should I use unsigned?

- Don’t use just because the number is non-negative
 - Easy to make mistakes
 \[\text{unsigned } i; \]
 \[\text{for } (i = \text{cnt-2}; i >= 0; i--) \]
 \[a[i] += a[i+1]; \]
 - Can be very subtle
 - \#define DELTA sizeof(int)
 - int i;
 - for (i = CNT; i-DELTA >= 0; i-= DELTA)
 - Do use when performing modular arithmetic
 - Multiprecision arithmetic
 - Do use when using bits to represent sets
 - Logical right shift, no sign extension

Next time: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C