Lecture 3: Floating Point

Computer Architecture and Systems Programming

(252-0061-00)

Timothy Roscoe
Herbstsemester 2012
Last Time: Integers

• Representation: unsigned and signed
• Conversion, casting
 – Bit representation maintained but reinterpreted
• Expanding, truncating
 – Truncating = mod
• Addition, negation, multiplication, shifting
 – Operations are mod 2^w

• “Ring” properties hold
 – Associative, commutative, distributive, additive 0 and inverse
• Ordering properties do not hold
 – $u > 0$ does not mean $u + v > v$
 – $u, v > 0$ does not mean $u \cdot v > 0$
Today: Floating Point

• Background (recap from Digital Design)
 – Fractional binary numbers
 – Definition of IEEE floating point
• More on IEEE floating point
• Example and properties
• Rounding, addition, multiplication
• Floating point in C
• Summary
Fractional binary numbers

• What is 1011.101?
Fractional Binary Numbers

• Representation
 – Bits to right of “binary point” represent fractional powers of 2
 – Represents rational number:

$$\sum_{k=-j}^{i} b_k \cdot 2^k$$
Fractional Binary Numbers

• Observations
 – Divide by 2 by shifting right
 – Multiply by 2 by shifting left
 – Numbers of form $0.111111..._2$ are just below 1.0
 • $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 • Use notation $1.0 - \varepsilon$

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5^3/4$</td>
<td>101.11₂</td>
</tr>
<tr>
<td>$2^7/8$</td>
<td>10.111₂</td>
</tr>
<tr>
<td>$63/64$</td>
<td>0.111111₂</td>
</tr>
</tbody>
</table>
Representable Numbers

• Limitation
 – Can only exactly represent numbers of the form $x/2^k$
 – Other rational numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>0.010101010101[01]...₂</td>
</tr>
<tr>
<td>1/5</td>
<td>0.001100110011[0011]...₂</td>
</tr>
<tr>
<td>1/10</td>
<td>0.0001100110011[0011]...₂</td>
</tr>
</tbody>
</table>

You can’t represent 0.1_{10}
IEEE Floating Point

• IEEE Standard 754
 – Established in 1985 as uniform standard for floating point arithmetic
 • Before that, many idiosyncratic formats
 – Supported by all major CPUs

• Driven by numerical concerns
 – Nice standards for rounding, overflow, underflow
 – Hard to make fast in hardware
 • Numerical analysts predominated over hardware designers in defining standard
Floating Point Representation
(recap from Digital Design)

• Numerical Form:

\((-1)^s M \times 2^E\)

 – **Sign bit** s determines whether number is negative or positive
 – **Significand** M normally a fractional value in range $[1.0, 2.0)$.
 – **Exponent** E weights value by power of two

• Encoding

 – **MSB** (Most Significant Bit) s is sign bit s
 – **exp** field encodes E (but is not equal to E)
 – **frac** field encodes M (but is not equal to M)
Today: Floating Point

• Background (recap from Digital Design)
 – Fractional binary numbers
 – Definition of IEEE floating point

• More on IEEE floating point

• Example and properties

• Rounding, addition, multiplication

• Floating point in C

• Summary
Precisions

- Single precision: 32 bits
 - s: 1 bit
 - exp: 8 bits
 - frac: 23 bits

- Double precision: 64 bits
 - s: 1 bit
 - exp: 11 bits
 - frac: 52 bits

- Extended precision: 80 bits (Intel only)
 - s: 1 bit
 - exp: 15 bits
 - frac: 63 or 64 bits
Normalized Values

• Condition: \(\text{exp} \neq 000...0 \) and \(\text{exp} \neq 111...1 \)

• Exponent coded as \textbf{biased} value: \(E = \text{Exp} - \text{Bias} \)
 – \(\text{Exp} \): unsigned value \(\text{exp} \)
 – \(\text{Bias} = 2^{e-1} - 1 \), where \(e \) is number of exponent bits
 • Single precision: 127 (\(\text{Exp}: 1...254, E: -126...127 \))
 • Double precision: 1023 (\(\text{Exp}: 1...2046, E: -1022...1023 \))

• Significand coded with \textbf{implied leading 1}: \(M = 1 . \text{xxx}...\text{x}_2 \)
 – \(\text{xxx}...\text{x} \): bits of \(\text{frac} \)
 – Minimum when \(000...0 \) (\(M = 1.0 \))
 – Maximum when \(111...1 \) (\(M = 2.0 - \epsilon \))
 – Get extra leading bit for “free”
Normalized Encoding Example

• Value: \(\text{float } F = 15213.0; \)
 \[15213_{10} = 11101101101101_2 \]
 \[= 1.11011011011012 \times 2^{13} \]

• Significand
 – \(M = \underline{1.1101101101101} \)
 – \(\text{frac} = \underline{11011011101101}000000000000_2 \)

• Exponent
 – \(E = 13 \)
 – \(\text{Bias} = 127 \)
 – \(\text{Exp} = 140 = 10001100_2 \)

• Result: \[\text{0 10001100 110110110111010000000000000} \]
Denormalized Values

• Condition: \(\text{exp} = 000...0 \)

• Exponent value: \(E = -\text{Bias} + 1 \) (instead of \(E = 0 - \text{Bias} \))

• Significand coded with implied leading 0: \(M = 0 . \text{xxx}...\text{x} \)
 • \(\text{xxx}...\text{x} \): bits of \(\text{frac} \)

• Cases
 – \(\text{exp} = 000...0, \text{frac} = 000...0 \)
 • Represents value 0
 • Note distinct values: +0 and –0 (why?)
 – \(\text{exp} = 000...0, \text{frac} \neq 000...0 \)
 • Numbers very close to 0.0
 • Lose precision as get smaller
 • Equispaced
Special Values

• Condition: exp = 111...1

• Case: exp = 111...1, frac = 000...0
 – Represents value ∞ (infinity)
 – Operation that overflows
 – Both positive and negative
 – E.g. 1.0/0.0 = -1.0/-0.0 = +∞, 1.0/-0.0 = -∞

• Case: exp = 111...1, frac ≠ 000...0
 – Not-a-Number (NaN)
 – Represents case when no numeric value can be determined
 – E.g., sqrt(−1), ∞ - ∞, ∞ * 0
Visualization: Floating Point Encodings

-∞ - Denorm -∞ +∞

-∞ - Normalized -∞ +∞

-∞ - Denorm -∞ +∞

-∞ - Normalized -∞ +∞

NaN NaN NaN NaN
Today: Floating Point

• Background (recap from Digital Design)
 – Fractional binary numbers
 – Definition of IEEE floating point
• More on IEEE floating point
• Example and properties
• Rounding, addition, multiplication
• Floating point in C
• Summary
Tiny Floating Point Example

• 8-bit floating point representation
 – the sign bit is in the most significant bit.
 – the next four bits are the exponent, with a bias of 7.
 – the last three bits are the frac

• Same general form as IEEE Format
 – normalized, denormalized
 – representation of 0, NaN, infinity
Dynamic range (positive only)

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>000</td>
<td>−6</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
<td>001</td>
<td>−6</td>
<td>$1/8 \times 1/64 = 1/512$</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
<td>010</td>
<td>−6</td>
<td>$2/8 \times 1/64 = 2/512$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>closest to zero</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denormalized numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
<td>110</td>
<td>−6</td>
<td>$6/8 \times 1/64 = 6/512$</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
<td>111</td>
<td>−6</td>
<td>$7/8 \times 1/64 = 7/512$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>largest denorm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normalized numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0001</td>
<td>000</td>
<td>−6</td>
<td>$8/8 \times 1/64 = 8/512$</td>
</tr>
<tr>
<td>0</td>
<td>0001</td>
<td>001</td>
<td>−6</td>
<td>$9/8 \times 1/64 = 9/512$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>smallest norm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0110</td>
<td>110</td>
<td>−1</td>
<td>$14/8 \times 1/2 = 14/16$</td>
</tr>
<tr>
<td>0</td>
<td>0110</td>
<td>111</td>
<td>−1</td>
<td>$15/8 \times 1/2 = 15/16$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>closest to 1 below</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0111</td>
<td>000</td>
<td>0</td>
<td>$8/8 \times 1 = 1$</td>
</tr>
<tr>
<td>0</td>
<td>0111</td>
<td>001</td>
<td>0</td>
<td>$9/8 \times 1 = 9/8$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>closest to 1 above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0111</td>
<td>010</td>
<td>0</td>
<td>$10/8 \times 1 = 10/8$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1110</td>
<td>110</td>
<td>7</td>
<td>$14/8 \times 128 = 224$</td>
</tr>
<tr>
<td>0</td>
<td>1110</td>
<td>111</td>
<td>7</td>
<td>$15/8 \times 128 = 240$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>largest norm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1111</td>
<td>000</td>
<td>n/a</td>
<td>inf</td>
</tr>
</tbody>
</table>
Distribution of values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1 = 3$

- Notice how the distribution gets denser toward zero.
Distribution of values (close-up view)

- 6-bit IEEE-like format
 - $e = 3$ exponent bits
 - $f = 2$ fraction bits
 - Bias is 3
Interesting numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00...00</td>
<td>00...00</td>
<td>0.0</td>
</tr>
<tr>
<td>Smallest pos. denorm.</td>
<td>00...00</td>
<td>00...01</td>
<td>$2^{-{23,52}} \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td></td>
<td>Single</td>
<td></td>
<td>$\approx 1.4 \times 10^{-45}$</td>
</tr>
<tr>
<td></td>
<td>Double</td>
<td></td>
<td>$\approx 4.9 \times 10^{-324}$</td>
</tr>
<tr>
<td>Largest denormalized</td>
<td>00...00</td>
<td>11...11</td>
<td>$(1.0 - \varepsilon) \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td></td>
<td>Single</td>
<td></td>
<td>$\approx 1.18 \times 10^{-38}$</td>
</tr>
<tr>
<td></td>
<td>Double</td>
<td></td>
<td>$\approx 2.2 \times 10^{-308}$</td>
</tr>
<tr>
<td>Smallest pos. normalized</td>
<td>00...01</td>
<td>00...00</td>
<td>$1.0 \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Just larger than largest denormalized</td>
</tr>
<tr>
<td>One</td>
<td>01...11</td>
<td>00...00</td>
<td>1.0</td>
</tr>
<tr>
<td>Largest normalized</td>
<td>11...10</td>
<td>11...11</td>
<td>$(2.0 - \varepsilon) \times 2^{{127,1023}}$</td>
</tr>
<tr>
<td></td>
<td>Single</td>
<td></td>
<td>$\approx 3.4 \times 10^{38}$</td>
</tr>
<tr>
<td></td>
<td>Double</td>
<td></td>
<td>$\approx 1.8 \times 10^{308}$</td>
</tr>
</tbody>
</table>

{single, double}
Special properties of encoding

• FP zero same as integer zero
 – All bits = 0 (for +0)

• Can (almost) use unsigned integer comparison
 – Must first compare sign bits
 – Must consider -0 = 0
 – NaNs problematic
 • Will be greater than any other values
 • What should comparison yield?
 – Otherwise OK
 • Denorm vs. normalized
 • Normalized vs. infinity
Today: Floating Point

• Background (recap from Digital Design)
 – Fractional binary numbers
 – Definition of IEEE floating point
• More on IEEE floating point
• Example and properties
• Rounding, addition, multiplication
• Floating point in C
• Summary
Floating point operations: basic idea

• $x +_f y = \text{Round}(x + y)$

• $x \times_f y = \text{Round}(x \times y)$

• Basic idea
 – First compute exact result
 – Make it fit into desired precision
 • Possibly overflow if exponent too large
 • Possibly round to fit into frac
Rounding

• Rounding modes (illustrate with $ rounding)

<table>
<thead>
<tr>
<th></th>
<th>$1.40</th>
<th>$1.60</th>
<th>$1.50</th>
<th>$2.50</th>
<th>-$1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Towards zero</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>-$1</td>
</tr>
<tr>
<td>Round down (-∞)</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>-$2</td>
</tr>
<tr>
<td>Round up (+∞)</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>$3</td>
<td>-$1</td>
</tr>
<tr>
<td>Nearest Even (default)</td>
<td>$1</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>-$2</td>
</tr>
</tbody>
</table>

• What are the advantages of the modes?
Closer look at Round-To-Even

• Default rounding mode
 – Hard to get any other kind without dropping into assembly
 – All others are statistically biased
 • Sum of set of positive numbers will consistently be over- or under- estimated

• Applying to other decimal places / bit positions
 – When exactly halfway between two possible values
 • Round so that least significant digit is even
 – E.g., round to nearest hundredth

<table>
<thead>
<tr>
<th>Value</th>
<th>Result</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2349999</td>
<td>1.23</td>
<td>(less than half way)</td>
</tr>
<tr>
<td>1.2350001</td>
<td>1.24</td>
<td>(greater than half way)</td>
</tr>
<tr>
<td>1.2350000</td>
<td>1.24</td>
<td>(half-way – round up)</td>
</tr>
<tr>
<td>1.2450000</td>
<td>1.24</td>
<td>(half way – round down)</td>
</tr>
</tbody>
</table>
Rounding Binary Numbers

• Binary fractional numbers
 – “Even” when least significant bit is 0
 – “Half way” when bits to right of rounding position = 100\ldots_2

• Examples
 Round to nearest 1/4 (2 bits right of binary point)

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Rounded</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2\ 3/_32)</td>
<td>10.000112</td>
<td>10.002</td>
<td>< ½ : down</td>
<td>2</td>
</tr>
<tr>
<td>(2\ 3/_16)</td>
<td>10.001102</td>
<td>10.012</td>
<td>> ½ : up</td>
<td>2 (1/4)</td>
</tr>
<tr>
<td>(2\ 7/_8)</td>
<td>10.111002</td>
<td>11.002</td>
<td>= ½ : up</td>
<td>3</td>
</tr>
<tr>
<td>(2\ 5/_8)</td>
<td>10.101002</td>
<td>10.102</td>
<td>= ½ : down</td>
<td>2 (1/2)</td>
</tr>
</tbody>
</table>
Creating a floating point number

• **Steps**
 – Normalize to have leading 1
 – Round to fit within fraction
 – Postnormalize to deal with effects of rounding

• **Case study**
 – Convert 8-bit unsigned numbers to tiny floating point format

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>100000000</td>
</tr>
<tr>
<td>15</td>
<td>00001101</td>
</tr>
<tr>
<td>17</td>
<td>00010001</td>
</tr>
<tr>
<td>19</td>
<td>00010011</td>
</tr>
<tr>
<td>138</td>
<td>10001010</td>
</tr>
<tr>
<td>63</td>
<td>00111111</td>
</tr>
</tbody>
</table>
Normalize

Requirement

– Set binary point so that numbers of form 1.xxxxx
– Adjust all to have leading one
 • Decrement exponent as shift left

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Fraction</th>
<th>Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>10000000</td>
<td>1.00000000</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>00001101</td>
<td>1.10100000</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>00010001</td>
<td>1.00010000</td>
<td>5</td>
</tr>
<tr>
<td>19</td>
<td>00010011</td>
<td>1.00110000</td>
<td>5</td>
</tr>
<tr>
<td>138</td>
<td>10001010</td>
<td>1.00010100</td>
<td>7</td>
</tr>
<tr>
<td>63</td>
<td>00111111</td>
<td>1.11111000</td>
<td>5</td>
</tr>
</tbody>
</table>
Rounding

1.BBG[***R***]X

- **Round up conditions**
 - Round = 1, Sticky = 1 ➞ > 0.5
 - Guard = 1, Round = 1, Sticky = 0 ➞ Round to even

<table>
<thead>
<tr>
<th>Value</th>
<th>Fraction</th>
<th>GRS</th>
<th>Incr?</th>
<th>Rounded</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>1.000000000</td>
<td>000</td>
<td>N</td>
<td>1.000</td>
</tr>
<tr>
<td>15</td>
<td>1.101000000</td>
<td>100</td>
<td>N</td>
<td>1.101</td>
</tr>
<tr>
<td>17</td>
<td>1.000100000</td>
<td>010</td>
<td>N</td>
<td>1.000</td>
</tr>
<tr>
<td>19</td>
<td>1.001100000</td>
<td>110</td>
<td>Y</td>
<td>1.010</td>
</tr>
<tr>
<td>138</td>
<td>1.000101000</td>
<td>011</td>
<td>Y</td>
<td>1.001</td>
</tr>
<tr>
<td>63</td>
<td>1.111110000</td>
<td>111</td>
<td>Y</td>
<td>10.000</td>
</tr>
</tbody>
</table>
Postnormalize

• Issue
 – Rounding may have caused overflow
 – Handle by shifting right once & incrementing exponent

<table>
<thead>
<tr>
<th>Value</th>
<th>Rounded</th>
<th>Exp</th>
<th>Adjusted</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>1.000</td>
<td>7</td>
<td></td>
<td>128</td>
</tr>
<tr>
<td>15</td>
<td>1.101</td>
<td>3</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td>1.000</td>
<td>4</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>1.010</td>
<td>4</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>138</td>
<td>1.001</td>
<td>7</td>
<td></td>
<td>134</td>
</tr>
<tr>
<td>63</td>
<td>10.000</td>
<td>5</td>
<td>1.000/6</td>
<td>64</td>
</tr>
</tbody>
</table>
FP Multiplication

\((–1)^{s_1} M_1 \ 2^{E_1} \times (–1)^{s_2} M_2 \ 2^{E_2}\)

• Exact Result: \((-1)^{s} \ M \ 2^{E}\)
 – Sign \(s\): \(s_1 \ ^{\wedge} \ s_2\)
 – Significand \(M\): \(M_1 \ * \ M_2\)
 – Exponent \(E\): \(E_1 + E_2\)

• Fixing
 – If \(M \geq 2\), shift \(M\) right, increment \(E\)
 – If \(E\) out of range, overflow
 – Round \(M\) to fit \(\text{frac}\) precision

• Implementation
 – Biggest chore is multiplying significands
Floating Point Addition

\[(-1)^{s_1} M_1 \ 2^{E_1} \ + \ (-1)^{s_2} M_2 \ 2^{E_2} \]
Assume \(E_1 > E_2 \)

- Exact Result: \((-1)^s M \ 2^E\)
 - Sign \(s \), significand \(M \):
 - Result of signed align & add
 - Exponent \(E \): \(E_1 \)

- Fixing
 - If \(M \geq 2 \), shift \(M \) right, increment \(E \)
 - if \(M < 1 \), shift \(M \) left \(k \) positions, decrement \(E \) by \(k \)
 - Overflow if \(E \) out of range
 - Round \(M \) to fit \text{frac} precision
Mathematical properties of floating point addition

• Compare to those of Abelian Group
 – Closed under addition?
 • But may generate infinity or NaN
 Yes
 – Commutative?
 Yes
 – Associative?
 No
 • Overflow and inexactness of rounding
 – 0 is additive identity?
 Yes
 – Every element has additive inverse?
 Almost
 • Except for infinities & NaNs

• Monotonicity
 – \(a \geq b \Rightarrow a+c \geq b+c ? \)
 Almost
 • Except for infinities & NaNs
Mathematical properties of floating point multiplication

• Compare to Commutative Ring
 – Closed under multiplication?
 • But may generate infinity or NaN
 – Multiplication Commutative?
 Yes
 – Multiplication is Associative?
 No
 – Possibility of overflow, inexactness of rounding
 – 1 is multiplicative identity?
 Yes
 – Multiplication distributes over addition?
 No
 – Possibility of overflow, inexactness of rounding

• Monotonicity
 – \(a \geq b \) & \(c \geq 0 \) \(\Rightarrow \) \(a \times c \geq b \times c \)?
 • Except for infinities & NaNs
 Almost
Today: Floating Point

• Background (recap from Digital Design)
 – Fractional binary numbers
 – Definition of IEEE floating point
• More on IEEE floating point
• Example and properties
• Rounding, addition, multiplication
• Floating point in C
• Summary
Floating Point in C

• C Guarantees Two Levels
 float single precision
double double precision

• Conversions/Casting
 – Casting between int, float, and double changes bit representation
 – double/float → int
 • Truncates fractional part
 • Like rounding toward zero
 • Not defined when out of range or NaN: Generally sets to Tmin
 – int → double
 • Exact conversion, as long as int has ≤ 53 bit word size
 – int → float
 • Will round according to rounding mode
Today: Floating Point

- Background (recap from Digital Design)
 - Fractional binary numbers
 - Definition of IEEE floating point
- More on IEEE floating point
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Summary

• IEEE Floating Point has clear mathematical properties
• Represents numbers of form $M \times 2^E$
• One can reason about operations independent of implementation
 – As if computed with perfect precision and then rounded
• Not the same as real arithmetic
 – Violates associativity/distributivity
 – Makes life difficult for compilers & serious numerical applications programmers
Floating Point Puzzles

• For each of these C expressions, either:
 – Argue that it is true for all argument values
 – Explain why not true

- \(x == (\text{int})(\text{float}) \ x \)
- \(x == (\text{int})(\text{double}) \ x \)
- \(f == (\text{float})(\text{double}) \ f \)
- \(d == (\text{float}) \ d \)
- \(f == -(-f); \)
- \(2/3 == 2/3.0 \)
- \(d < 0.0 \Rightarrow ((d*2) < 0.0) \)
- \(d > f \Rightarrow -f > -d \)
- \(d \times d >= 0.0 \)
- \((d+f)-d == f \)

```c
int x = ...;
float f = ...;
double d = ...;
```

Assume neither \(d \) nor \(f \) is NaN