==

Systems @ ETH ziricn

Tutorial 1: Introduction to C

Computer Architecture and
Systems Programming
(252-0061-00)

Herbstsemester 2012

Goal :Ej

Systems @ ETH ziricn

e Quick introductionto C
— Enough to program assignments
— Background for lectures

e Assume you know Java or C#
— E.g. from Parallel Programming
* Non-goal:
— Teach details and strict definition of C
— Teach advanced features/idioms/techniques in C

Further reading

Systems @ ETH ziricn
Online: http://www.iu.hio.no/~mark/CTutorial/CTutorial.html
Old, but a Very advanced:
THE great tutorial all the stuff you
| (how | never wanted to
‘@ learned C) know about C©

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

PRI L SRS SERES

A Reference Manual
FIREH EDITION

Definitive.

Samuel P. Harbison Il * Guy L. Steele Jr.

http://www.iu.hio.no/~mark/CTutorial/CTutorial.html

Compared to Java or C E;

Systems @ ETH ziricn

No objects, classes, features, methods, or interfaces
— Only functions/procedures

— Function pointers will be met later...

No memory management

— Lots of things on the stack

— Heap structures must be explicitly created and freed
No fancy built-in types

— Mostly just what the hardware provides

— Type constructors to build structured types

No exceptions

— convention is to use integer return codes

Compared to Java or C

Systems @ ETH ziricn
Powerful macro pre-processor (cpp)
Very fast
— Almost impossible to write assembly as fast as a good C
compiler

— Pretty much impossible to compile Java to run as fast as C
Pointers: real machine addresses

Close to the metal: you can know what the code is doing to
the hardware
—> Language of choice for

— Operating System developers

— Embedded systems

— People who really care about speed
— Authors of security exploits

A feel of C programs E;

Systems @ ETH ziricn

A Cprogram is characterized by:
— Functions, grouped by header files and libraries
— Data structures built using structs and pointers
— Created dynamically using malloc and free
— Symbolic constants defined with cpp macros

e More advanced features:

— Polymorphism and object dispatch with function
pointers

Syntax: the good news

Systems @ ETH ziricn

Similar to Java or C#

Java or C# syntax almost entirely lifted from C
Comments (/*...*/, //) the same

|dentifiers the same as in Java (C# allows more characters in
identifiers)

Block structure using { ... }
Many other constructs the same or similar

Main differences

List of reserved words is different

Cis run through a macro preprocessor
e String and file substitution
e Conditional compilation

e Although C# has preprocessor directives, it does not have a separate
preprocessor. Moreover there are no macros.

Hello World

Systems @ ETH ziricn

“header file” — bit like an
interface file in Java or C#

#include <stdio.h>

Every program has to have a
“main” function, which takes a
list of command line arguments.

int main(int argc, char *argv[])

{

printf(*“hello, world\n™);
return O;

Generic function for printing
formatted strings. The
“newline” is not included
automatically!

Returning O indicates everything
is OK — C has no exceptions.

Workflow

Systems @ ETH ziricn

2. Compile each Cfile into

1. Macro substitution, assembly language

Include header files

i}}} >

3. Assemble each file into 4. Link object files into
object code program binary

The C Preprocessor

Systems @ ETH ziricn

* |nclude the “header” file

#include <Ffilel.h> inline in the source code

e Basic mechanism for
defining APls

e Use of <> or “” determines
where to look for the file
— Use <> for system headers

— Use “” for your own headers

* |ncluded files can include
other files

— Beware of including files
twice!

#i1nclude “file2.h”

The C Preprocessor E;

Systems @ ETH ziricn

* Token-based macro
#define FOO BAZ substitution

#define BAR(X) (Xx+3) * Any subsequent

occurrence of FOO s
replaced with BAZ

— Until a #undef® FOO

#undef FOO

« BAR(4) is replaced with
(4+3)
— Not 7!

« BAR(hello) isreplaced
with (hello+3)

The C Preprocessor E;

Systems @ ETH ziricn
#1fdeft FOO e Text 1 is used if a macro
.. (text 1) FOO is defined, otherwise
#else Text 2
(text 2) e Opposite for BAR
#end i o #else is optional

* |diom for header files:

#1fndef _ FILE H
#define _ FILE_H

.. (text1) .. (contents of file.h)
#else #endif // _ FILE_H

.. (text 2) * Ensures file contents only
#endif appear once!

#1fndef BAR

==

Systems @ ETH ziricn

Typesin C

Declarations E;

Systems @ ETH ziricn

e Are like Java or C#:

int my_int;

double some_ floating point = 0.123;
* |nside a block:

— Scope is just the block
— static - value persists between calls

e Qutside a block:

— Scope is the entire program!
— static - scope limited to the file (compilation unit)

Integers and floats

Systems @ ETH ziricn

 Types and sizes:

C data type Typlcal 32-bit m Intel x86-64

char 1

short 2 2 2
int 4 4 4
fong 4 4 8
flong long 8 8 8
float 4 4 4
double 8 8 8
long double 8 10/12 10/16

* |ntegers are signed by default
— use signed or unsigned to clarify

Integers and floats E;

Systems @ ETH ziricn

e Rules for arithmetic on integers and floats are
complex
— Implicit conversions between integer types
— Implicit conversions between floating point types
— Explicit conversions between anything (casts)

e Behavior is either:
— Determined by the hardware
— Was decided by hardware, a long time ago

o \We’ll cover this more in lectures

Booleans

Systems @ ETH ziricn

 Boolean values are just integers

— False - zero
— True - anything non-zero
— Negation (“!”) turns zero into non-zero, and vice-versa

e Any statement in Cis also an expression, hence idioms like:

int rc;

IT (1(rc = call_some_tn(Q))) {
printf(“Failed with return code %d\n”, rc);
exit(l);

by

// Carry on: call succeeded.

Casting E;

Systems @ ETH ziricn

e Most C types can be cast to another:

unsigned Int ul = OXFFEEDDCC;
signed Int 1 gsigned int)ui;
Y

= 1 hasvalue-1122868. Name of type
in parentheses

functions like an
operator.

e Bit-representation does not change!
 Frequently used with pointer types...

Arrays

e Finite set of variables,
all the same type

 For an N-element array
a:
— First element is a[0]
— last element is a[N-1]

e Ccompiler does not
check the array bounds!
— Very typical bug!

— Always check array
bounds!

Systems @ ETH ziricn

#include <stdio.h>

float data[5]; /* data to average and total */
float total; /* total of the data items */
float average; /* average of the items */

int main(Q {

data]0] = 34.0;
data[l] = 27.0;
data[2] = 45.0;
data[3] = 82.0;
data[4] = 22.0;

total = data[0] + data[l] + data[2] +
data[3] + data[4];

average = total / 5.0;

printf(""Total %F Average %f\n', total,
average);

return (0);

Multi-dimensional arrays

Systems @ ETH ziricn
int a[3][3];
0 0 0 0 0 0 0 0 0
a[o]1[o] a[i1rol .. a[il[z] al2]1[2]
int a =1; .V
for (i=0; 1 < 3; 1++)
for (J=0; jJ < 3; j++)

matrix[1][j] = a++;

1 2 3 4 5 6 7 8 9
int a =1; 7
for (i=0; i < 3; i++) %

for (J=0; j < 3; jt++)
matrix[j][1] = a++;

1 4 7 p 5 8 3 6 9

More on arrays

Arrays can be initialized when

they are defined:

/* a[o]
al1]

31
7’
al2] 9

*/

int a[3] = {3, 7, 9};

/* list[0]=0.0, .

float list[100] = {};

1ist[99]=0.0 */

int a[3][3] = {

};

{1, 2, 3},
{ 4. 5, 6},
{ 7.8, 9},

Systems @ ETH ziricn

e Strings are arrays of

characters terminated with
the null character \0:

char str[6] =
{,h,’,e’,,l’,,l,,,o,,,\O,}

... is the same as:
char str[6] = "hello";

e Secretly, arrays are (almost)
the same as pointers

Example string library

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[]) {
char namel[12], name2[12], mixed[25];
char title[20];

strcpy(namel, "Rosalinda");
strcpy(name2, "Zeke");
strcpy(title, "This is the title.");

printf(" %s\n\n", title);
printf("Name 1 is %s\n", namel);
printf("Name 2 is %s\n", name2);

if(strcmp(namel, name2) > 0)
/* returns 1 if namel > name2 */
strcpy(mixed, namel);
else
strcpy(mixed, name2);

Systems @ ETH ziricn

printf("The biggest name alphabetically is %s\n",
mixed);

strcpy(mixed, namel);

strcat(mixed, " ");

strcat(mixed, name2);

printf("Both names are %s\n", mixed);
return 0;

This is the title.

Namel is Rosalinda

Name2 is Zeke
The biggest name alphabetically is Zeke
Both names are Rosalinda Zeke

Sizes E;

Systems @ ETH ziricn

How much memory does a value take up?

Depends on machine and compiler!

Use:
si1zeof(type) or sizeof(value)

Evaluates at compile time to size in bytes

e.g.
iInNt nr = 1919;
Int size = sizeof(nr);

void :Ej

Systems @ ETH ziricn

There is a type called void.

It has no value.

Used for:

— Untyped pointers (to raw memory): “void *”
— Declaring functions with no return value (procedures)

si1zeof(voird) shouldn’t work

— Why?

— (Non-standard) GCC allows si1zeof(void)==
— Why?

Operators

ol - . Left-to-right < ° () is a function call

I ~ ++ —— + - * & (type) sizeof Right-to-left * —> meansstruct

Systems @ ETH ziricn

Decreasing precendence

*/ %

Left-to-right

pointer indirection

\

T - Left-to-right

: e Unary +, -, *
<< >> Left-to-right e * hereis pointer
< <= > >= Left-to-right indirection
== I= LEft-tO-right
& Left-to-right
N Left-to-right
| Left-to-right
&& Left-to-right _

e Ternary if-else

I Left-to-right operator
?: Right-to-left
= 4= —= *= /= %= &= N= |= <<= >>= Right-to-left

Left-to-right

==

Systems @ ETH ziricn

Control flow

Control flow statements
(like Java or C#) Systemse ETHzuc

1T (Expression) Statement_when_true
else Statement_when_false

switch (Expression) {
case Constant_1 : Statement; break;
case Constant_2 : Statement; break;

case Constant_n: Statement; break;
default: Statement; break;

return (Expression)

Control flow statements :E;

(just like Java) ystemseETHzm

for (initial; Test; Increment) Statement

while (Expression) Statement

do Statement while (Expression)

Control flow statements :E;

(not like Java, same as C#) systems @ ETH i
break Unlike
Java,
. P<: can’t give
continue 2 label!

goto Label

Controversial, but
occasionally very useful
indeed!

Functions

Main unit of composition for
programs

— Return type: type of the value
returned by the function when
it terminates

— Name: identifies the function

— Arguments of defined types:
parameters to pass to the
function

Arguments passed by value

— function gets copy of the value
of the parameters but cannot
modify the actual parameters

— Values can be passed by
reference using pointers to the
values instead

Systems @ ETH ziricn

General syntax:

returntype function_name(def of parameters) {
localvariables
functioncode

}

Example:

float findavg(float a, float b)
{

float average;
average=(a+b)/2;
return(average);

}

Must be declared as prototypes before
they are defined:

float findavg(float a, float b);

©Gustavo Alonso, ETH Zurich.

Example

/* Compute factorial function */
/*fact(n)=n*(n-1)*...*2*1*/

#include <stdio.h>

int fact(int n)
{
if (n==0){
return(1);
}else {

return(n * fact(n-1));
}
}

int main(int argc, char *argv[])

{

intn, m;

printf("Enter a number: ");
scanf("%d", &n);

m = fact(n);

printf("Factorial of %d is %d.\n", n, m);
return 0;

Systems @ ETH ziricn

main() is also a function

/* program to print arguments from
command line */

#include <stdio.h>

int main(int argc, char **argv) {
int i1;

printf(*'argc = %d\n\n',argc);
for (1=0;i<argc;++1)
printf(argv[%d]: %s\n",1,
argvlil);
return O;

. argc: argument count.
Number arguments passed in the command line

. argv: argument vector (array).
All the arguments as strings

e argc isalways at least 1 since argv[0] is the
name of the program

Systems @ ETH ziricn

/* append one file to the another */
#include <stdio.h>
#include <stdlib.h>

int

/*

main(int argc, char **argv) {
int c;
FILE *from, *to;
if (argc '= 3) { /* Check the arguments. */
fprintf(stderr, "Usage: %s from-file to-file\n",
*argv);
exit(l);

}
if ((from = fopen(argv[1l], "r')) == NULL) {
, perror(argv[1l]); /* Open the from-file

exit(l);

}

if ((to = fopen(argv[2], "a'™)) == NULL) {
perror(argv[2]); /* Open the to-file */
exit(l);

}

Read one file and append to the other until EOF */

whille ((c = getc(from)) != EOF)
putc(c, to);

/*close the files */

fclose(from);

fclose(to);

exit(0);

©Gustavo Alonso, ETH Zurich.

printf

e Just another function, but very useful!

#include <stdio.h>

int 1 = 79;

const char *s=*“Mothy”’;

printf(““My name 1s %s and 1 work in CAB F %d\n”, s,

e First argument is format string

— see “man 3 printf” for all the (many) options
e Remaining arguments are arbitrary

— but must match the format

* You will see other “printf-like” functions

Systems @ ETH ziricn

1);

	Tutorial 1: Introduction to C�Computer Architecture and�Systems Programming�(252-0061-00)
	Goal
	Further reading
	Compared to Java or C#
	Compared to Java or C#
	A feel of C programs
	Syntax: the good news
	Hello World
	Workflow
	The C Preprocessor
	The C Preprocessor
	The C Preprocessor
	Types in C
	Declarations
	Integers and floats
	Integers and floats
	Booleans
	Casting
	Arrays
	Multi-dimensional arrays
	More on arrays
	Example string library
	Sizes
	void
	Operators
	Control flow
	Control flow statements �(like Java or C#)
	Control flow statements �(just like Java)
	Control flow statements �(not like Java, same as C#)
	Functions
	Example
	main() is also a function
	printf

