
Tutorial 1: Introduction to C
Computer Architecture and

Systems Programming
(252-0061-00)

Herbstsemester 2012

© Systems Group | Department of Computer Science | ETH Zürich

Goal

• Quick introduction to C
– Enough to program assignments

– Background for lectures

• Assume you know Java or C#
– E.g. from Parallel Programming

• Non-goal:
– Teach details and strict definition of C

– Teach advanced features/idioms/techniques in C

Further reading

Old, but a
great tutorial

(how I
learned C)

Very advanced:
all the stuff you
never wanted to
know about C

Definitive.

Online: http://www.iu.hio.no/~mark/CTutorial/CTutorial.html

http://www.iu.hio.no/~mark/CTutorial/CTutorial.html

Compared to Java or C#

• No objects, classes, features, methods, or interfaces
– Only functions/procedures
– Function pointers will be met later…

• No memory management
– Lots of things on the stack
– Heap structures must be explicitly created and freed

• No fancy built-in types
– Mostly just what the hardware provides
– Type constructors to build structured types

• No exceptions
– convention is to use integer return codes

Compared to Java or C#

• Powerful macro pre-processor (cpp)
• Very fast

– Almost impossible to write assembly as fast as a good C
compiler

– Pretty much impossible to compile Java to run as fast as C
• Pointers: real machine addresses
• Close to the metal: you can know what the code is doing to

the hardware
⇒ Language of choice for
– Operating System developers
– Embedded systems
– People who really care about speed
– Authors of security exploits

A feel of C programs

• A C program is characterized by:
– Functions, grouped by header files and libraries

– Data structures built using structs and pointers

– Created dynamically using malloc and free

– Symbolic constants defined with cpp macros

• More advanced features:
– Polymorphism and object dispatch with function

pointers

Syntax: the good news

• Similar to Java or C#
– Java or C# syntax almost entirely lifted from C
– Comments (/*...*/, //) the same
– Identifiers the same as in Java (C# allows more characters in

identifiers)
– Block structure using { … }
– Many other constructs the same or similar

• Main differences
– List of reserved words is different
– C is run through a macro preprocessor

• String and file substitution
• Conditional compilation
• Although C# has preprocessor directives, it does not have a separate

preprocessor. Moreover there are no macros.

Hello World

#include <stdio.h>

int main(int argc, char *argv[])
{
 printf(“hello, world\n”);
 return 0;
}

“header file” – bit like an
interface file in Java or C#

Every program has to have a
“main” function, which takes a

list of command line arguments.

Generic function for printing
formatted strings. The

“newline” is not included
automatically!

Returning 0 indicates everything
is OK – C has no exceptions.

Workflow

cpp cc1 as ld C source Binary

2. Compile each C file into
assembly language 1. Macro substitution,

Include header files

3. Assemble each file into
object code

4. Link object files into
program binary

The C Preprocessor

#include <file1.h>

#include “file2.h”

• Include the “header” file
inline in the source code

• Basic mechanism for
defining APIs

• Use of <> or “” determines
where to look for the file
– Use <> for system headers
– Use “” for your own headers

• Included files can include
other files
– Beware of including files

twice!

The C Preprocessor

#define FOO BAZ
#define BAR(x) (x+3)

…

#undef FOO

• Token-based macro
substitution

• Any subsequent
occurrence of FOO is
replaced with BAZ
– Until a #undef FOO

• BAR(4) is replaced with
(4+3)
– Not 7!

• BAR(hello) is replaced
with (hello+3)

The C Preprocessor

#ifdef FOO
… (text 1)
#else
… (text 2)
#endif

#ifndef BAR
… (text 1)
#else
… (text 2)
#endif

• Text 1 is used if a macro
FOO is defined, otherwise
Text 2

• Opposite for BAR
• #else is optional
• Idiom for header files:

#ifndef __FILE_H
#define __FILE_H

… (contents of file.h)
#endif // __FILE_H

• Ensures file contents only
appear once!

Types in C

Declarations

• Are like Java or C#:
int my_int;
double some_floating_point = 0.123;

• Inside a block:
– Scope is just the block
– static → value persists between calls

• Outside a block:
– Scope is the entire program!
– static → scope limited to the file (compilation unit)

Integers and floats

• Types and sizes:

• Integers are signed by default
– use signed or unsigned to clarify

C data type Typical 32-bit ia32 Intel x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 4 8

long long 8 8 8

float 4 4 4

double 8 8 8

long double 8 10/12 10/16

Integers and floats

• Rules for arithmetic on integers and floats are
complex
– Implicit conversions between integer types
– Implicit conversions between floating point types
– Explicit conversions between anything (casts)

• Behavior is either:

– Determined by the hardware
– Was decided by hardware, a long time ago

• We’ll cover this more in lectures

Booleans

• Boolean values are just integers
– False → zero
– True → anything non-zero
– Negation (“!”) turns zero into non-zero, and vice-versa

• Any statement in C is also an expression, hence idioms like:

int rc;
if (!(rc = call_some_fn())) {
 printf(“Failed with return code %d\n”, rc);
 exit(1);
}
// Carry on: call succeeded.

Casting

• Most C types can be cast to another:

unsigned int ui = 0xFFEEDDCC;
signed int i = (signed int)ui;

⇒ i has value -1122868.

• Bit-representation does not change!
• Frequently used with pointer types…

Name of type
in parentheses
functions like an
operator.

Arrays

• Finite set of variables,
all the same type

• For an N-element array
a:
– First element is a[0]
– last element is a[N-1]

• C compiler does not
check the array bounds!
– Very typical bug!
– Always check array

bounds!

#include <stdio.h>
float data[5]; /* data to average and total */
float total; /* total of the data items */
float average; /* average of the items */

int main() {
 data[0] = 34.0;
 data[1] = 27.0;
 data[2] = 45.0;
 data[3] = 82.0;
 data[4] = 22.0;

 total = data[0] + data[1] + data[2] +

 data[3] + data[4];
 average = total / 5.0;
 printf("Total %f Average %f\n", total,

 average);
 return (0);
}

Multi-dimensional arrays
int a[3][3];

int a = 1;
for (i=0; i < 3; i++)
 for (j=0; j < 3; j++)
 matrix[i][j] = a++;

int a = 1;
for (i=0; i < 3; i++)
 for (j=0; j < 3; j++)
 matrix[j][i] = a++;

0 0 0 0 0 0 0 0 0

a[0][0] a[2][2] a[1][0] a[1][2] … … …

1 2 3 4 5 6 7 8 9

1 4 7 2 5 8 3 6 9

More on arrays
• Arrays can be initialized when

they are defined:

/* a[0] = 3,
 a[1] = 7,
 a[2] = 9 */

int a[3] = {3, 7, 9};

/* list[0]=0.0, …,
 list[99]=0.0 */
float list[100] = {};

int a[3][3] = {
 { 1, 2, 3},
 { 4, 5, 6},
 { 7, 8, 9},
};

• Strings are arrays of
characters terminated with
the null character \0:

char str[6] =

{’h’,’e’,’l’,’l’,’o’,’\0’}

… is the same as:
char str[6] = "hello";

• Secretly, arrays are (almost)
the same as pointers

Example string library
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[]) {
 char name1[12], name2[12], mixed[25];
 char title[20];

 strcpy(name1, "Rosalinda");
 strcpy(name2, "Zeke");
 strcpy(title, "This is the title.");

 printf(" %s\n\n", title);
 printf("Name 1 is %s\n", name1);
 printf("Name 2 is %s\n", name2);

 if(strcmp(name1, name2) > 0)
 /* returns 1 if name1 > name2 */
 strcpy(mixed, name1);
 else
 strcpy(mixed, name2);

 printf("The biggest name alphabetically is %s\n",
mixed);

 strcpy(mixed, name1);
 strcat(mixed, " ");
 strcat(mixed, name2);
 printf("Both names are %s\n", mixed);
 return 0;
}

 This is the title.

Name1 is Rosalinda
Name2 is Zeke
The biggest name alphabetically is Zeke
Both names are Rosalinda Zeke

 This is the title.

Name1 is Rosalinda
Name2 is Zeke
The biggest name alphabetically is Zeke
Both names are Rosalinda Zeke

Sizes

• How much memory does a value take up?

• Depends on machine and compiler!

• Use:
sizeof(type) or sizeof(value)

• Evaluates at compile time to size in bytes

• e.g.
 int nr = 1919;
 int size = sizeof(nr);

void

• There is a type called void.
• It has no value.
• Used for:

– Untyped pointers (to raw memory): “void *”
– Declaring functions with no return value (procedures)

• sizeof(void) shouldn’t work

– Why?
– (Non-standard) GCC allows sizeof(void)==1
– Why?

Operators
Operator Associativity
() [] -> . Left-to-right

! ~ ++ -- + - * & (type) sizeof Right-to-left

* / % Left-to-right

+ - Left-to-right

<< >> Left-to-right

< <= > >= Left-to-right

== != Left-to-right

& Left-to-right

^ Left-to-right

| Left-to-right

&& Left-to-right

|| Left-to-right

?: Right-to-left

= += -= *= /= %= &= ^= |= <<= >>= Right-to-left

, Left-to-right

D
ec

re
as

in
g

pr
ec

en
de

nc
e

• () is a function call
• -> means struct

pointer indirection

• Unary +, -, *
• * here is pointer

indirection

• Ternary if-else
operator

Control flow

Control flow statements
(like Java or C#)

if (Expression) Statement_when_true
 else Statement_when_false

switch (Expression) {
 case Constant_1 : Statement; break;
 case Constant_2 : Statement; break;
 …
 case Constant_n: Statement; break;
 default: Statement; break;
}

return (Expression)

Control flow statements
(just like Java)

for (initial; Test; Increment) Statement

while (Expression) Statement

do Statement while (Expression)

Control flow statements
(not like Java, same as C#)

goto Label

Controversial, but
occasionally very useful

indeed!

break

continue

Unlike
Java,

can’t give
a label!

Functions

• Main unit of composition for
programs
– Return type: type of the value

returned by the function when
it terminates

– Name: identifies the function
– Arguments of defined types:

parameters to pass to the
function

• Arguments passed by value
– function gets copy of the value

of the parameters but cannot
modify the actual parameters

– Values can be passed by
reference using pointers to the
values instead

General syntax:

 returntype function_name(def of parameters) {
 localvariables
 functioncode
}

Example:

float findavg(float a, float b)
{
 float average;
 average=(a+b)/2;
 return(average);
}

Must be declared as prototypes before

they are defined:

float findavg(float a, float b);

©Gustavo Alonso, ETH Zürich.

Example
/* Compute factorial function */
/* fact(n) = n * (n-1) * … * 2 * 1 */

#include <stdio.h>

int fact(int n)
{
 if (n == 0) {
 return(1);
 } else {
 return(n * fact(n-1));
 }
}

int main(int argc, char *argv[])
{
 int n, m;

 printf("Enter a number: ");
 scanf("%d", &n);
 m = fact(n);
 printf("Factorial of %d is %d.\n", n, m);
 return 0;
}

main() is also a function
/* program to print arguments from

command line */
#include <stdio.h>

int main(int argc, char **argv) {
 int i;

 printf("argc = %d\n\n",argc);
 for (i=0;i<argc;++i)
 printf("argv[%d]: %s\n",i,

argv[i]);
 return 0;
}

• argc: argument count.

Number arguments passed in the command line
• argv: argument vector (array).

All the arguments as strings
• argc is always at least 1 since argv[0] is the

name of the program

/* append one file to the another */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv) {
 int c;
 FILE *from, *to;
 if (argc != 3) { /* Check the arguments. */
 fprintf(stderr, "Usage: %s from-file to-file\n",

*argv);
 exit(1);
 }
 if ((from = fopen(argv[1], "r")) == NULL) {
 perror(argv[1]); /* Open the from-file

*/
 exit(1);
 }
 if ((to = fopen(argv[2], "a")) == NULL) {
 perror(argv[2]); /* Open the to-file */
 exit(1);
 }
 /* Read one file and append to the other until EOF */
 while ((c = getc(from)) != EOF)
 putc(c, to);
 /*close the files */
 fclose(from);
 fclose(to);
 exit(0);
}

©Gustavo Alonso, ETH Zürich.

printf

• Just another function, but very useful!

#include <stdio.h>
int i = 79;
const char *s=“Mothy”;
printf(“My name is %s and I work in CAB F %d\n”, s, i);

• First argument is format string

– see “man 3 printf” for all the (many) options

• Remaining arguments are arbitrary
– but must match the format

• You will see other “printf-like” functions

	Tutorial 1: Introduction to C�Computer Architecture and�Systems Programming�(252-0061-00)
	Goal
	Further reading
	Compared to Java or C#
	Compared to Java or C#
	A feel of C programs
	Syntax: the good news
	Hello World
	Workflow
	The C Preprocessor
	The C Preprocessor
	The C Preprocessor
	Types in C
	Declarations
	Integers and floats
	Integers and floats
	Booleans
	Casting
	Arrays
	Multi-dimensional arrays
	More on arrays
	Example string library
	Sizes
	void
	Operators
	Control flow
	Control flow statements �(like Java or C#)
	Control flow statements �(just like Java)
	Control flow statements �(not like Java, same as C#)
	Functions
	Example
	main() is also a function
	printf

