Advanced Computer Networks
263-3501-00

Wireless TCP

Patrick Stuedi
Spring Semester 2014
Outline

- Last week:
 - Cellular Networks
 - Mobile IP

- Today:
 - Wireless TCP
Remember: TCP congestion control

- Congestion control got added to TCP to in attempt to reduce congestion inside the network
- Must rely on indirect measures of congestion
- Implemented at the sender

Attempts to reduce buffer overflow inside the network
Remember: TCP Slow Start

- Congestion window (CW)
 - Number of bytes in TCP that can be transmitted without waiting for the ACK (CW always smaller than receiver window, flow ctrl)
 - Initially set to 1 TCP segment

- SSThresh
 - Initially set to 64 KB

- TCP congestion control:
 - After all ACKs corresponding to one CQ have been received (typically after one RTT), the window is doubled
 - slow start (actually quite fast)
 - If CW >= SSThresh increase CW by 1 after all ACKs corresponding to one CQ have been received
 - linear increase (congestion avoidance)
 - On a timeout: Set SSThresh to half of the current CW, then set CW back to 1K
Example: Slow start
Problems of TCP in Wireless Networks

- Congestion control algorithm has been designed for wired/fixed networks
 - In fixed networks a packet loss is an indication of congestion
 - In wireless networks packet lost due to transmission errors or mobility
 - TCP cannot distinguish between errors and congestion
 - TCP unnecessarily reduces window, resulting in low throughput and high latency

- Delay is often high
 - RTT can be very long and variable
 - TCP's timeout mechanism may not work well

- Links may be asymmetric
 - Delayed ACKs in the slow direction can limit throughput in fast direction
TCP in Wireless: Solutions

- Cannot change TCP fundamentally
 - TCP congestion control keep the Internet operable
 - Improvements have to be interoperable

- Possible Solutions:
 1) End-to-End
 - Fast retransmit, Selective Acknowledgments
 2) Split Connection
 - Separate wired path and wireless hop
 3) Link Layer
 - Error-correcting codes
 - Local retransmissions
 - Snooping
End-to-End: Fast retransmit

- Note: TCP sends an acknowledgement only after receiving a packet
- If a sender receives several acknowledgements for the same packet, this means
 - The receiver got all packets up to the acknowledged packet in sequence
 - The receiver is still receiving packets
 - The gap is most likely not due to congestion, try to avoid triggering slow start
- Fast retransmit:
 - If sender receives three duplicate ACKs for the same SeqNr he retransmits the missing packet (before the timeout occurs)
 - Reduce CW only to the half, and continue with linear increase
Fast Retransmit: Example

Single packet loss (within a RTT) can be handled with fast retransmit.
Fast Retransmit: Pros/Cons

- Advantages:
 - Simple, minor modifications in the mobile host's TCP stack (TCP Tahoe)
 - Correspondent node's stack does not have to be changed

- Disadvantages:
 - Inefficient: lost packets still have to cross the entire network between correspondent node and mobile host
Split-Connection: Indirect TCP

- Two TCP connections:
 - Fixed to Base: unmodified TCP connection
 - Base to mobile: optimized TCP connection
- Buffering at BS
- Independent flow and congestion control on the two connections
Indirect TCP: Pros/Cons

- Advantages:
 - Transmission errors on the wireless link do not propagate into the fixed network
 - The short delay on the mobile hop is known and therefore it is possible to use precise timeouts and fast retransmissions
 - It is possible to use a different transport layer protocol on the mobile hop

- Disadvantages:
 - Serious: Loss of end-to-end semantics
 ACK to the sender does not any longer mean that the receiver got a packet, FAs may crash
 - Problems during handover
Socket and State Migration during I-TCP handover

- Old proxy must forward buffered data to new proxy because it has already acknowledged the data with the CN
 - Migrate TCP buffer to new proxy
 - Migrate socket state (seqnbr, addresses, ports, etc)
Snooping TCP

- Snoop agent at the BS
 - Monitors TCP segments and ACKs
 - Caches segments until acknowledged
 - Detects packet loss and retransmits lost packets if cached

- Data transfer to the mobile host
 - Packet loss detected by snooping duplicated ACKs
 - Fast retransmission possible

- Data transfer from the mobile host
 - Packet loss detected by looking at sequence numbers
 - Snooping agent answers with NACK to the MH
Snooping TCP: pros/cons

Advantages

- End-to-end TCP semantics is preserved
- Changes of TCP only within the FA
 - the CN does need to change
- Handover can be more easily supported than with I-TCP
- Interoperable with FAs that do not support the enhancement

Disadvantages

- Won't work if TCP connection is encrypted
- Does not isolate the behaviour of the wireless link like I-TCP
 - As long as packets are not acknowledged end-to-end the corresponding node has a timer ready waiting to retransmit/slow start
Other improvements: Selective retransmission

- TCP acknowledgements are cumulative
 - ACK N = correct and in-sequence receipt of packets up to N
 - If single packets are missing a whole packet sequence has to be retransmitted (go-back-n), thus wasting bandwidth

- Selective retransmission
 - RFC 2018 allows for ACKs of single packets (SACKs)
 - Sender can now retransmit only the missing packets

- Advantage
 - Much higher efficiency

- Disadvantage
 - More complex software and more buffer needed at the receiver
 - Trade-off memory, complexity vs performance
TCP over 3G: Best Practice

- Selective ACKs (TCP SACK)
- Increase the TCP’s initial window (from 1 to 2-4 segments)
- Larger TCP receive window (typically only 64KB)
 - Windows scale option (window gets shifted, allows for almost 1G size)
- Explicit Notification Schemes
 - Router marks ACK packets with ECN (congestion) or ELN (Loss) bit to allow end host to distinguish between congestion and loss
 - With ELN, end host will then not back off, but simply retransmit
 - Requires support from ECN capable routers
- Fast Retransmit
Longer RTT leads to higher Energy Consumption

- 3G consumes significantly more energy to upload a fixed size byte buffer than WiFi
- Energy cost mainly caused by longer RTT
 - Longer RTT → longer data transfer time → more energy used
TCP and 802.11 Power Save Mode (PSM)

- Experiment: transfer 500 KB over TCP using Wifi PSM
- First part of the transfer
 - TCP window is small: allow sender to sleep after finishing window
- Second part of transfer:
 - First Ack is received while still sending: sender won't sleep
- PSM may prolong total transfer time and increase energy consumption
References