

ASL

Project Intro + Bash Tutorial

Organization

● Tutorials on Tuesdays
● Project Q&A sessions on Thursdays

– Starting from next week

● Mapping Student -> TA is published on course
web page - find your TA there

Dryad Cluster

● 16 machines (dryad01 – dryad16)
● Use it for testing

– Shared for all students

● You can connect anytime with ssh

The Project

● No Team-Work
● Use

– Java

– PostgreSQL

– Ant (no Eclipse/Netbeans/IntelliJ project files for submission)

● Not allowed are:
– Use of external libraries (except PostgreSQL jdbc driver and

log4j)

– Running anything else on the DB-machine than PostgreSQL (no
Java-Proxy)

Testing & Scripting

● Your end product is not allowed to use anything
but JDK+PostgreSQL

● BUT: you are free to use any other
library/framework for testing and benchmarking

● E.g. you can use JUnit for testing and bash
scripts for automation

Your Infrastructure

● Your private machine (or ETH machines in the
PC rooms), for development and simple testing

● Dryad cluster provided by the Systems Group
for distributed testing

● The Amazon Computing Cloud for benchmarks

Bash Tutorial
(darkoma@inf.ethz.ch)

Comments from previous years

● “I had to stay up all night to run experiments!”
● “I cannot work on this from home...”
● “It took us more than 40hr./week to work on this

milestone.”
● Solution is simple

Automate the experiments!

Bash Basics

● Bash is the command line interface used by most
Linux systems

● On Windows: Use Putty to connect to a remote
machine (Cluster and/or Amazon)

● Most Bash-commands are simple programs that
are executed

● Recommended for automating experiments
– Feel free to use other scripting languages (Python, ...)

Running Bash Commands

command arg1 arg2
starts a command prompt returns as soon as the command
finished

command arg1 arg2 &
runs the command in the background

command arg1 arg2 > out
runs the command, write standard out to file called "out"

command arg1 arg2 | command2 arg
runs the command and "pipes" the output into command2

Conditionals in Bash

MYVAR=foo

set variable MYVAR to foo

export MYVAR=bar

set MYVAR, child processes will see it as well

if [$MYVAR = foo]

then

echo "MYVAR is foo"

elif [$MYVAR = bar]

then

echo "Bar"

else

echo "Somethingisodd"

fi

Loops in Bash

for i in $(ls)

do
echo item:$i

done

for i in `seq 1 10`

do
echo $i

done

COUNTER=0

while [$COUNTER -lt 10]

do

echo The counter is $COUNTER

let COUNTER=COUNTER+1

done

Running across multiple machines

● Use SSH and SCP

– ssh darkoma@optimus.ethz.ch
● Login to machine called optimus.ethz.ch as user darkoma

– ssh darkoma@optimus.ethz.ch “ls”
● Execute command "ls" on optimus as user darkoma
● This is great for scripting!!!

– scp project.jar darkoma@optimus.ethz.ch:~/asl
● Copy project.jar to ~/asl on optimus

● Hints:
– To use ssh and scp in scripts use public key for passwordless

authentication

Enabling Passwordless Login

● To enable passwordless login on local machine:

 cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
● To enable passwordless login on remote machine:

 ssh-copy-id <username>@<machine>
● If there is no id_rsa.pub:

 ssh-keygen
● And don't give a password

Running experiments while away

● What if my VPN connection fails while running the experiments

– Use screen [1]

● Bad 1:

darkoma@localmachine : ~$./runExperiment.sh
● Connection is lost → experiment fails

● Bad 2:

darkoma@localmachine : ~$ ssh remotemachine

darkoma@localmachine : ~$./runExperiment.sh
● Connection is lost → experiment fails

Good:

darkoma@localmachine : ~$ ssh remotemachine

darkoma@remotemachine: ~$ screen -S experiment

darkoma@remotemachien: ~$./runExperiment.sh
● Connection is lost:

darkoma@localmachine : ~$ ssh remotemachine

darkoma@remotemachine: ~$ screen -dR experiment

[1] http://www.gnu.org/software/screen/manual/screen.html#Overview

mailto:darkoma@localmachine
mailto:darkoma@localmachine
mailto:darkoma@localmachine
mailto:darkoma@localmachine
mailto:darkoma@remotemachine
mailto:darkoma@remotemachien
mailto:darkoma@localmachine
mailto:darkoma@remotemachine

Bash Demo

● Sample script that:

1. Checks if passwordless login to server and client is working

2. Copies jar file to server and client machines

3. Runs server and waits for it to start listening to connections

4. Starts clients on client machines

5. Waits for clients to finish

6. Copies log files from client machine

7. Deletes log files from client and server machines

8. Processes log files

9. Plots the result with gnuplot
● Will be made available on the course web page

Compiling and running PostgreSQL

Compiling PostgreSQL

mkdir /mnt/local/username

create a new directory

download postgresql source and copy it with scp to the remote machine

tar xjf postgresql-9.3.5.tar.bz2

cd postgresql-9.3.5/

./configure --prefix="/mnt/local/username/postgres"

the prefix tells the system where you want to install postgres

make

this compiles postgresql – it might take a while

make install

install it

Running PostgreSQL

LD_LIBRARY_PATH=/mnt/local/username/postgres/lib

export LD_LIBRARY_PATH

make sure Linux can find the required shared libraries

/mnt/local/username/postgres/bin/initdb -D /mnt/local/username/postgres/db/

this will create a newdatabase

make sure to create it on a local disk and NOT in NFS (not your home directory)

/mnt/local/username/postgres/bin/postgres -D /mnt/local/username/postgres/db/ -p
PORTNUMBER -i -k /mnt/local/username/

PORTNUMBER should be a random number bigger than 1024 – it might fail if another user
runs postgres on that port already – just use another port number

The – k parameter lets postgres write the Unix socket into another directory (default is
/tmp)

if this is not set, postgres might fail because another user wrote a unix socket
already.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

