Advanced Systems Lab
Tutorial III
Statistics and Analysis

G. Alonso
Systems Group

http://www.systems.ethz.ch
Reading assignment

• Read chapters 10, 11, 12, and 13
• Read chapters 17 to 22
Basic statistics

• Not a course on statistics
 – You have done that already
 – We assume familiarity with the basics

• Focus on experimental aspects
 – What and when to measure
 – Side effects and different performance patterns
 – Data distributions
 – Sampling
 – Mean, Average, Outliers, deviation, plotting
 – Confidence intervals
Accuracy vs. Precision

Accuracy = how close to the real value (often unknown)
Precision = similarity of the results of repeated experiments

http://en.wikipedia.org/wiki/Accuracy_and_precision
What and when to measure

• Decide on the parameters to measure:
 – Throughput, response time, latency, etc.

• Design your experiment
 – Configuration, data, load generators, instrumentation, hypothesis

• Run the experiment and start measuring:
 – When to measure (life cycle of an experiment)
 – What to measure (sampling)
Life cycle of an experiment:

- **Warm up**
- **Steady state**
- **Cool down**

Measure only here
Warm up phase

• Warm up phase
 – Time until clients are all up, caches full (warm), data in main memory, etc.
 – Throughput lower than steady state throughput
 – Response time better than in steady state

• Detect by watching measured parameter changing with time

• Measure only in steady state
Cool down phase

• Cool down phase
 – Clients start finishing, resulting in less load in the system
 – Throughput is lower than in steady state
 – Response time better than in steady state

• Detect by observing when measured parameter suddenly changes behavior

• Stop measuring when clients no longer generate a steady load
Patterns to watch for - glitches

QUESTIONS TO ASK:
- IS THIS A BUG OR A FEATURE?
- IS IT MY SYSTEM OR AN INTERFERENCE?
- SHOULD BE INCLUDED IN MEASUREMENTS OR EXCLUDED?

ASSUME STEADY STATE MEASUREMENTS
Patterns to watch for - trends

QUESTIONS TO ASK:
• IS THE PARAMETER SUPPOSED TO GROW IN TIME?
• IS IT MY SYSTEM OR AN INTERFERENCE?
• SHOULD BE COMPENSATED IN THE RESULTS?

ASSUME STEADY STATE MEASUREMENTS
Patterns to watch for - periodic

QUESTIONs TO ASK:
• WHERE DOES THE PERIOD COME FROM?
• IS IT MY SYSTEM OR THE LOAD GENERATORS?
• I AM SEEING EVERYTHING?

ASSUME STEADY STATE MEASUREMENTS
Why are these pattern relevant?

• Too few measurements and too short experiments are meaningless
 – May not capture system behavior
 – May not show pathological behavior
 – May not reflect real values

• Statistics are a way to address some of these issues by providing more information from the data and a better idea of the system behavior
 – but applying statistics to the wrong data will not help!
Data distributions
What are we measuring?

• When measuring, we are trying to estimate the value of a given parameter
• The value of the parameter is often determined by a complex combination of many effects and is typically not a constant
• Thus, the parameter we are trying to measure can be seen as a RANDOM VARIABLE
• The assumption is that this random variable has a NORMAL (GAUSSIAN) DISTRIBUTION
Central limit theorem

• Let $X_1, X_2, X_3, \ldots X_n$ be a sequence of independently and identically distributed random variables with finite values of
 – Expectation (μ)
 – Variance (σ^2)

as the sample size n increases, the distribution of the sample average of the n random variables approaches the normal distribution with a mean μ and variance σ^2/n regardless of the shape of the original distribution.
How does it work?

Normal or Gaussian distribution

http://en.wikipedia.org/wiki/Normal_distribution
Meaning of standard deviation

• The standard deviation gives an idea of how close are the measurements to the mean
 – important in defining service guarantees
 – important to understand real behavior

Mean is 50 but standard deviation is 20, indicating that there is a large variation in the value of the parameter
Mean of a sample

• To interpret a given measurement, we need to provide complete information
 – The mean
 – The standard deviation around the mean

Mean and standard deviation

• The standard deviation defines margins around the mean:
 – 64% of the values are within $\mu \pm \sigma$
 – 95% of the values are within $\mu \pm 2\sigma$
 – 99.7% of the values are within $\mu \pm 3\sigma$

• For a real system is very important to understand what happens when the values go beyond those margins (delays, overload, thrashing, system crash, etc.)
Calculating the standard deviation

• Mean and standard deviation:

\[\mu = \frac{\sum_{i=1}^{N} x_i}{N} \quad \sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2} \]

• In practice, use:

\[s = \sqrt{\frac{1}{N - 1} \sum_{i=1}^{N} (x_i - \bar{x})^2} \]
Comparisons

- What is better?

Deterministic behavior is often more important than good performance
In practice

• In many systems, the standard deviation is almost more important than the mean:
 – 90% of the queries need to be answered in less than X seconds
 – No web request can take longer than 5 seconds
 – Changes have to be propagated in less than 10 seconds
 – Guaranteed bandwidth higher than X 90% of the time

• Achieving determinism is often done at the cost of performance
Confidence intervals
Background

• When measuring in software system, we typically do not know neither the value of the parameter we are measuring (µ) nor its standard deviation (σ)
• Instead, we work with mean of the sample \(\bar{x} \) and the estimated standard deviation (s)
 – the result is no longer a normal distribution but a t-distribution
 – The t-distribution depends on n, the amount of samples
 – For large n, the t.distribution tends to a normal distribution
Confidence interval

- Since typically we are not measuring an absolute value (unlike in the natural sciences), the notion of confidence interval is particularly useful in computer science.
- A confidence interval is a range (typically around the mean) where we can say that if we repeat the experiment 100 times, the value observed will be within the confidence interval \(m \) times (e.g., \(m=95 \), leading to a 95% confidence interval).
Calculation

• The confidence interval is calculated as follows:

\[CI = \bar{x} \pm t \cdot \frac{s}{\sqrt{n}} \]

Where \(s \) is the sample standard deviation, \(n \) the number of samples and \(t \) the critical value of the \(t \)-distribution.
T in a table

Look up the value for the desired confidence interval and \((n-1)\)

<table>
<thead>
<tr>
<th></th>
<th>One Sided</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75%</td>
<td>80%</td>
<td>85%</td>
<td>90%</td>
<td>95%</td>
<td>97.5%</td>
<td>99%</td>
<td>99.5%</td>
<td>99.75%</td>
<td>99.9%</td>
<td>99.95%</td>
</tr>
<tr>
<td></td>
<td>75%</td>
<td>80%</td>
<td>85%</td>
<td>90%</td>
<td>95%</td>
<td>97.5%</td>
<td>99%</td>
<td>99.5%</td>
<td>99.75%</td>
<td>99.9%</td>
<td>99.95%</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>60%</td>
<td>70%</td>
<td>80%</td>
<td>90%</td>
<td>95%</td>
<td>98%</td>
<td>99%</td>
<td>99.5%</td>
<td>99.8%</td>
<td>99.9%</td>
</tr>
<tr>
<td>Two Sided</td>
<td>1.000</td>
<td>1.376</td>
<td>1.963</td>
<td>3.078</td>
<td>6.314</td>
<td>12.71</td>
<td>31.82</td>
<td>63.66</td>
<td>127.3</td>
<td>318.3</td>
<td>636.6</td>
</tr>
<tr>
<td></td>
<td>0.816</td>
<td>1.061</td>
<td>1.386</td>
<td>1.886</td>
<td>2.920</td>
<td>4.303</td>
<td>6.965</td>
<td>9.925</td>
<td>14.09</td>
<td>22.33</td>
<td>31.60</td>
</tr>
<tr>
<td></td>
<td>0.765</td>
<td>0.978</td>
<td>1.250</td>
<td>1.638</td>
<td>2.353</td>
<td>3.182</td>
<td>4.541</td>
<td>5.841</td>
<td>7.453</td>
<td>10.21</td>
<td>12.92</td>
</tr>
<tr>
<td></td>
<td>0.741</td>
<td>0.941</td>
<td>1.190</td>
<td>1.533</td>
<td>2.132</td>
<td>2.776</td>
<td>3.747</td>
<td>4.604</td>
<td>5.598</td>
<td>7.173</td>
<td>8.610</td>
</tr>
<tr>
<td></td>
<td>0.727</td>
<td>0.920</td>
<td>1.156</td>
<td>1.476</td>
<td>2.015</td>
<td>2.571</td>
<td>3.365</td>
<td>4.032</td>
<td>4.773</td>
<td>5.893</td>
<td>6.869</td>
</tr>
<tr>
<td></td>
<td>0.718</td>
<td>0.906</td>
<td>1.134</td>
<td>1.440</td>
<td>1.943</td>
<td>2.447</td>
<td>3.143</td>
<td>3.707</td>
<td>4.317</td>
<td>5.208</td>
<td>5.959</td>
</tr>
<tr>
<td></td>
<td>0.711</td>
<td>0.896</td>
<td>1.119</td>
<td>1.415</td>
<td>1.895</td>
<td>2.365</td>
<td>2.998</td>
<td>3.499</td>
<td>4.029</td>
<td>4.785</td>
<td>5.408</td>
</tr>
<tr>
<td></td>
<td>0.706</td>
<td>0.889</td>
<td>1.108</td>
<td>1.397</td>
<td>1.860</td>
<td>2.306</td>
<td>2.896</td>
<td>3.355</td>
<td>3.833</td>
<td>4.501</td>
<td>5.041</td>
</tr>
<tr>
<td></td>
<td>0.703</td>
<td>0.883</td>
<td>1.100</td>
<td>1.383</td>
<td>1.833</td>
<td>2.262</td>
<td>2.821</td>
<td>3.250</td>
<td>3.690</td>
<td>4.297</td>
<td>4.781</td>
</tr>
</tbody>
</table>
Some observations

• For a fixed \(n \)
 – Increasing the confidence (100\%(1-\(\alpha \))) implies to extend the confidence interval

• To reduce the confidence interval
 – we decrease the confidence or,
 – we increase the number of examples

• For experiments, fix a target (typically 95% confidence in a 5-10% interval around the mean) and repeat the experiments until the level of confidence is reached –if ever ...
Example

- Mean = 122
- $s = 9$
- $n = 30$
- t (two sided, 29, 95%) = 2.045
- CI = $122 \pm (2.045 \cdot 9/30^-2)$
- In 95 out of 100 runs, the mean will be between 119 and 125
Putting it all together
Look at all the data

• Make sure you are looking at the complete picture of the experiment and your measurements do not include side effects (warm up, cool down, repetition effects)

• Once you are sure you have identified the valid data and that it looks reasonable, then apply statistics to it
Standard deviation

• All measurements and graphs have to be accompanied by the standard deviation, otherwise they are meaningless
 – Provides an idea of the precision
 – Provides an idea of what will happen in practice
 – Provides an idea of how predictable performance is

• Repeat the experiments until you get a reasonable standard deviation (enough values are close enough to the mean)
How long to run?

• Until you reach a reasonable confidence level that the value lies within a reasonable margin of the mean

• Confidence intervals are the way to quantify how often the reported result is going to be observed in practice

 — “we repeated the experiments until we reached a 95% level confidence for an interval 5% around the mean”
Advice

• It is a good idea to run a long experiment to make sure you have seen all possible behavior of the system:
 – Glitches only every 3 hours
 – Memory leaks after 1 M transactions

• In reality, tests have to resemble how the system will be used in practice
Designing an experiment
Experiments, but which ones?

• What does it mean to design an experiment?
• Performance is affected by a large number of factors
 – Workloads
 – Systems
 – Knobs
• We are interested in:
 – Which ones are the most important?
 – Which ones are related?
• Goal: get the most information with least effort (minimum number of experiments)
Definitions

- A **response variable** is the outcome of an experiment - typically the measured performance of the system (e.g., throughput, response time).
- A **factor** is any variable that affects the response, and which has several alternatives (amount of memory, number of cores, data sizes).
- **Levels** are the values that a given factor can assume – the alternatives for a factor.
- **Primary factors** are those whose effects need to be quantified.
- **Secondary factors** are those that impact performance but whose effect we are not interested in quantifying.
- **Replications** are the number of times each experiment is to be repeated with particular levels for each factor.
An experiment

• An experimental design consists of:
 – the number of different experiments
 – the factor level combinations for each experiment
 – the number of replications of each experiment

• An experimental unit is any entity used for the experiment
Interaction

- Two factors interact if the effect of one depends on the level of the other.
- Interaction considerably complicates the business of interpreting experimental results.

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>B_2</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>B_2</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>
Avoid mistakes

• Try to avoid the following:
 – Ignoring the variation due to experimental errors
 – Not controlling important parameters (secondary factors)
 – Not isolating the effects of different factors
 – Overly simple (and very inefficient designs)
 – Ignoring interactions between factors
 – Conducting too many experiments
 • Take it slowly!
 • Break up the project into steps
Exploring the space

• Given a number of factors, what to do?
• Bad idea:
 – Vary one factor at a time
 – Find best value, fix it
 – Repeat for each factor
• Why is this a bad idea?: too many experiments, will get stuck in local minimum
2^k Factorial Designs

• Experimental technique to find the relative weight of different factors
 – Pick K factors
 – Pick two levels for each factor
 – Behavior of factors must be unidirectional or monotonic in the range explored (!)
Example 2^2 Factorial Design

Observation: can update book examples by multiplying by 1000!

<table>
<thead>
<tr>
<th>Cache size (MB)</th>
<th>Memory size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4GB</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
</tr>
</tbody>
</table>

Define variables x_A and x_B to represent levels for each factor:

$$x_A = \begin{cases}
-1 & \text{if 4 GB main memory;} \\
1 & \text{if 16 GB main memory.}
\end{cases}$$

$$x_B = \begin{cases}
-1 & \text{if 1 MB cache,} \\
1 & \text{if 2 MB cache.}
\end{cases}$$
Solving the model

A useful fiction: non-linear regression model for performance:

\[y = q_0 + q_A \times A + q_B \times B + q_{AB} \times A \times B \]

This means we can write:

\[15 = q_0 - q_A - q_B + q_{AB} \]
\[45 = q_0 + q_A - q_B - q_{AB} \]
\[25 = q_0 - q_A + q_B - q_{AB} \]
\[75 = q_0 + q_A + q_B + q_{AB} \]
Relative weights on response variable

Solving:

\[y = 40 + 20x_A + 10x_B + 5x_Ax_B \]

What does this mean?

- Mean performance is 40
- Effect of memory is 20
- Effect of cache is 10
- Interaction between the two accounts for 5
In the form of a table

The same calculation can be done using a sign table:

<table>
<thead>
<tr>
<th>l</th>
<th>A</th>
<th>B</th>
<th>AB</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>45</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>75</td>
</tr>
<tr>
<td>160</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>Total</td>
</tr>
<tr>
<td>40</td>
<td>20</td>
<td>10</td>
<td>5</td>
<td>Total/4</td>
</tr>
</tbody>
</table>
Repetitions and errors

• Look in the book
 – How to allocate variation
 – How to consider repetitions of the experiments to look for errors

• For the milestone and analysis, please use repetitions to get meaningful results.