
Advanced Systems Lab (Fall’16) – First Milestone

Name: Your name
Legi number: Your legi number

Grading
Section Points

1.1
1.2
1.3
1.4
2.1
2.2
3.1
3.2
3.3

Total

Version: 29.09.2016 1



Notes on writing the report (remove this page for submission)

The report for first milestone not need to be extensive but it must be concise, complete, and
correct. Conciseness is important in terms of content and explanations, focusing on what has
been done and explanations of the results. A long report is not necessarily a better report,
especially if there are aspects of the design or the experiments that remain unexplained. Com-
pleteness implies that the report should give a comprehensive idea of what has been done by
mentioning all key aspects of the design, experiments, and analysis. Aspects of the system, be
it of its design or of its behavior, that remain unexplained detract from the credibility of the
report. Correctness is expected in terms of the explanations being logical and correlate with
the numbers in the experiments and the design.

Remember that this is a report about the system you have designed and built, about the
experiments you have performed, and about how you interpret the results of the experiments and
map them to your design and implementation. Please do not contact us seeking confirmation
and assurances about, e.g., whether the report is sufficient, your interpretation of the data,
validation of concrete aspects of your design, or whether you have done enough experiments.
Making those decisions is your job and part of what the course will evaluate.

The report will be graded together with the code and data submitted. The maximum
number of points is 200 for each of the milestones and you will need at least 100 to
pass. Keep in mind that to pass the project you need to collect at least 400 points
from the three milestones. You might be called for a meeting in person to clarify aspects
of the report or the system and to make a short presentation of the work done. By submitting
the report, the code, and the data, you confirm that you have done the work on your own, the
code has been developed by yourself, the data submitted comes from experiments your have
done, you have written the report on your own, and you have not copied neither code nor text
nor data from other sources.

A passing grade for the milestone requires at the very minimum:

• Conforming to this template

• A working system

• Consistent experimental results of the entire system

• Internal measurements of the middleware

• Solid and credible explanations of the design, experimental results and behavior of the
implemented system

Formatting guidelines

We expect you to use this template for the report, but in case you want to use Word or an other
text processor, keep in mind the following:

• We expect you to submit a single PDF that has the same section structure as this
template, and answers all points we outline here. If you use this file, you should
remove this page with notes, and the short description provided by us at the beginning of
sections.

• Keep the same cover page as on this document and fill out your name and legi number.
Leave the grading table empty.

• The main text should be in single-column format with 11pt font on A4 paper. In
case you don’t start with one of the files provided by us, for margins use 2.54 cm (1
inch) on all sides.

2



1 System Description

1.1 Overall Architecture

Length: at most 1 page
Explain how the abstract architecture we provided for you has been implemented in terms

of classes and shortly outline the main design decisions. Mark on the figure where are the points
that you instrumented the architecture (see Section 2.3 of the Project Description) and give the
different timestamps a name that you will use throughout the three milestones whenever
referencing measurements (e.g., Trequestreceived, Tresponsesent).

Reference throughout the report all relevant java source files, result files, etc. by providing
the gitlab link in a footnote, for instance1. An exception to this rule is the referencing of log
files belonging to experiments. These should be referenced by an ID, or short name, and there
has to be a table at the end of the report mapping these to files in the git repository.

1.2 Load Balancing and Hashing

Length: at most 1 page
Explain what hash function you use for load balancing and how you implement the selection

of servers. Give a short reasoning on why the chosen scheme should uniformly distribute load
(assuming no skew on the client side).

1.3 Write Operations and Replication

Length: at most 1 page
Provide a short description of how the writes are handled in the middleware. Explain how

the replicated case differs from the simple “write one” scenario.
Give an estimate of the latencies the writing operation will incur, and generalize it to the

replicated case. What do you expect will limit the rate at which writes can be carried out in
the system (if anything)?

1.4 Read Operations and Thread Pool

Length: at most 1 page
How are reads handled in the system? How does the middleware make sure that the queue

between the “main receiving” thread and the read handlers is not accessed in unsafe concurrent
manner? Explain what is the relation between threads in the thread pool and connections to
servers.

2 Memcached Baselines

This section will report experimental results. All such parts will start with a short description
of the experimental setup. The log files should be identified by a short name, or number, which
will be explicitly listed at the end of the document (see Logfile Listing at the end). If this table
is missing or the logfiles listed can’t be found in your repository the experiment
could be considered invalid, and no points will be awarded! For baseline measurement
of memcached provide two graphs (Section 2.1 and 2.2), one with aggregated throughput and
one with average response time and standard deviation as a function of number of virtual clients.
Increase these in steps from 1 to 128. Give a short explanation of memcache’s behavior and
find the number of virtual clients that saturate the server.

1https://gitlab.inf.ethz.ch/zistvan/asl-fall16-project/blob/master/src/ch/ethz/SomeClass.java

3

https://gitlab.inf.ethz.ch/zistvan/asl-fall16-project/blob/master/src/ch/ethz/SomeClass.java


Number of servers 1
Number of client machines 1 to 2
Virtual clients / machine 1 to 64

Workload Key 16B, Value 128B, Writes 1% 2

Middleware Not present
Runtime x repetitions 30s x 5

Log files microbench1, microbench2, . . .

2.1 Throughput

See previous explanation.

2.2 Response time

See previous explanation.

3 Stability Trace

In this section you will have to show that the middleware is functional and it can handle a long-running
workload without crashing or degrading in performance. For this you will run it with full replication for
one hour connected to three memcache instances and three load generator machines. You will have to
provide two graphs. The x-axis is time and the y-axis is either throughput or response time. Include
standard deviation whenever applicable.

Number of servers 3
Number of client machines 3
Virtual clients / machine 64 (explain if chosen otherwise)

Workload Key 16B, Value 128B, Writes 1% (see footnote)
Middleware Replicate to all (R=3)

Runtime x repetitions 1h x 1
Log files trace1, . . .

3.1 Throughput

See previous explanation.

3.2 Response time

See previous explanation.

3.3 Overhead of middleware

Compare the performance you expect based on the baselines and the one you observe in the trace and
quantify the overheads introduced by the middleware (if any), Look at both response time and achievable
throughput when making the comparison. Provide an overview of the overheads in a table form.

2As starting point use the workloads provided in http://www.systems.ethz.ch/sites/default/files/file/

asl2016/memaslap-workloads.tar. Use by default the small workload. In later experiments you can and should
change read-write ratios and potentially use other value sizes.

4

http://www.systems.ethz.ch/sites/default/files/file/asl2016/memaslap-workloads.tar
http://www.systems.ethz.ch/sites/default/files/file/asl2016/memaslap-workloads.tar


Logfile listing

Short name Location
microbench1 https://gitlab.inf.ethz.ch/.../baseline/logfile.log

microbench2 https://gitlab.inf.ethz.ch/.../baseline/logfile2.log

trace1 https://gitlab.inf.ethz.ch/.../baseline/logfile.log

. . . . . .

5

https://gitlab.inf.ethz.ch/.../baseline/logfile.log
https://gitlab.inf.ethz.ch/.../baseline/logfile2.log
https://gitlab.inf.ethz.ch/.../baseline/logfile.log

	System Description
	Overall Architecture
	Load Balancing and Hashing
	Write Operations and Replication
	Read Operations and Thread Pool

	Memcached Baselines
	Throughput
	Response time

	Stability Trace
	Throughput
	Response time
	Overhead of middleware


