Advanced Systems Lab
Tutorial III
Planning Experiments

G. Alonso
Systems Group
http://www.systems.ethz.ch
Why Experiments?
Quantitative questions about systems

• Absolute or comparative performance analysis
 – How many operations can a system run per second? How long does an operation take?
 – How many concurrent clients does a system support?
 – Do SSDs make an application faster than hard disks?
 – Should I use quick sort instead of merge sort for an online catalogue?
 – Where is the bottleneck in the system?
How to answer such questions?

• Experiments
 – You implement / install „system(s) under test“ (SUT)
 – You run benchmarks and measure observable results

• Modeling
 – You build a model of the „system(s) under test“
 – You calculate results with model

• Simulation
 – You implement a system that behaves like SUT
 – You run benchmarks and measure computed results
Experiments vs. Modeling

- Experiments
 - Often expensive to implement
 - Specific to environment (e.g., hardware used)
 - Accurate (quantitative) results
 - Sometimes misleading

- Modeling
 - Typically cheap
 - General
 - Qualitative results
 - You always learn something

- Use modeling whenever you can
 - Unfortunately, modern systems are too complex
Methodology

1. Ask the right question
 – Define the „system(s) under test“
 – Define what to measure and understand why
 – Define relevant workloads, understand parameters

2. Make a hypothesis
 – „A good scientist predicts the results and explains later why something totally different happened."

3. Carry out experiment (real system, model)
 – Run workloads, measure metrics

4. Report results, analyze results, gotoStep 1
 – Give answer to question, possibly refine question
Making a Hypothesis

• Use the same format as the final results
 – Draw graphs with expected results
 – Even try to predict variance and statistical properties
 – Make bullet points with explanations
 – Use „modeling“ to make hypothesis

• Share hypothesis with your customer
 – Validates whether you are asking the right question
 – i.e., can you make decisions if results turn out like that

• Comparison of expected vs. real results
 – Essential to find bugs in your experiments
 – Essential to understand real results
Data distributions
Accuracy vs. Precision

Accuracy = how close to the real value (often unknown)
Precision = similarity of the results of repeated experiments
Dealing with Accuracy

• Understand the System under Test

• Understand the environment in which the tests are being done:
 – Identify potential interference and sources of noise
 – Characterize those sources and try to estimate their value

• Correct (if possible and meaningful) the measured values to improve accuracy
Dealing with Precision

• When measuring, we are trying to estimate the value of a given parameter

• The value of the parameter is often determined by a complex combination of many effects and is typically not a constant

• Thus, the parameter we are trying to measure can be seen as a RANDOM VARIABLE

• The assumption is that this random variable has a NORMAL (GAUSSIAN) DISTRIBUTION
Central limit theorem

- Let $X_1, X_2, X_3, ... X_n$ be a sequence of independently and identically distributed random variables with finite values of
 - Expectation (μ)
 - Variance (σ^2)

as the sample size n increases, the distribution of the sample average of the n random variables approaches the normal distribution with a mean μ and variance σ^2/n regardless of the shape of the original distribution.
How does it work?

[Images showing the Central Limit Theorem progression: original, twice, three times, four times]

Normal or Gaussian distribution

http://en.wikipedia.org/wiki/Normal_distribution
The standard deviation gives an idea of how close are the measurements to the mean
– important in defining service guarantees
– important to understand real behavior

Mean is 50 but standard deviation is 20, indicating that there is a large variation in the value of the parameter
Mean of a sample

- To interpret a given measurement, we need to provide complete information
 - The mean
 - The standard deviation around the mean

Mean and standard deviation

• The standard deviation defines margins around the mean:
 – 64% of the values are within $\mu \pm \sigma$
 – 95% of the values are within $\mu \pm 2\sigma$
 – 99.7% of the values are within $\mu \pm 3\sigma$

• For a real system is very important to understand what happens when the values go beyond those margins (delays, overload, thrashing, system crash, etc.)
Calculating the standard deviation

• Mean and standard deviation:

\[\mu = \frac{\sum_{i=1}^{N} x_i}{N} \]
\[\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2} \]

• In practice, use:

\[s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2} \]
Comparisons

• What is better?

Deterministic behavior is often more important than good performance
In practice

• In many systems, the standard deviation is almost more important than the mean:
 – 90% of the queries need to be answered in less than X seconds
 – No web request can take longer than 5 seconds
 – Changes have to be propagated in less than 10 seconds
 – Guaranteed bandwidth higher than X 90% of the time

• Achieving determinism is often done at the cost of performance
Percentile Example

Query Latency in msec

Query Load in Queries/sec
Amazon Example (~2004)

• Amazon lost about 1% of shopping baskets
 – Acceptable because incremental cost of IT infrastructure to secure all shopping baskets much higher than 1% of the revenue

• Some day, somebody discovered that they lost the *largest* 1% of the shopping baskets
 – Not okay because those are the premium customers and they never come back
 – Result in much more than 1% of the revenue

• Be careful with correlations within results!!!
Putting it all together
Look at all the data

• Make sure you are looking at the complete picture of the experiment and your measurements do not include side effects (warm up, cool down, repetition effects)

• Once you are sure you have identified the valid data and that it looks reasonable, then apply statistics to it
Standard deviation

• All measurements and graphs have to be accompanied by the standard deviation, otherwise they are meaningless
 – Provides an idea of the precision
 – Provides an idea of what will happen in practice
 – Provides an idea of how predictable performance is

• Repeat the experiments until you get a reasonable standard deviation (enough values are close enough to the mean)
Advice

• It is a good idea to run a long experiment to make sure you have seen all possible behavior of the system:
 – Glitches only every 3 hours
 – Memory leaks after 1 M transactions

• In reality, tests have to resemble how the system will be used in practice
Designing an experiment
Experiments, but which ones?

• What does it mean to design an experiment?
 • Performance is affected by a large number of factors
 – Workloads
 – Systems
 – Knobs

• We are interested in:
 – Which ones are the most important?
 – Which ones are related?

• Goal: get the most information with least effort (minimum number of experiments)
A **response variable** is the outcome of an experiment - typically the measured performance of the system (e.g., throughput, response time)

A **factor** is any variable that affects the response, and which has several alternatives (amount of memory, number of cores, data sizes)

Levels are the values that a given factor can assume – the alternatives for a factor.

Primary factors are those whose effects need to be quantified

Secondary factors are those that impact performance but whose effect we are not interested in quantifying

Replications are the number of times each experiment is to be repeated with particular levels for each factor.
An experiment

• An experimental design consists of:
 – the number of different experiments
 – the factor level combinations for each experiment
 – the number of replications of each experiment

• An experimental unit is any entity used for the experiment
Interaction

• Two factors interact if the effect of one depends on the level of the other.
• Interaction considerably complicates the business of interpreting experimental results

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>B_2</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>B_2</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>
Avoid mistakes

• Try to avoid the following:
 – Ignoring the variation due to experimental errors
 – Not controlling important parameters (secondary factors)
 – Not isolating the effects of different factors
 – Overly simple (and very inefficient designs)
 – Ignoring interactions between factors
 – Conducting too many experiments
 • Take it slowly!
 • Break up the project into steps
Exploring the space

• Given a number of factors, what to do?

• Bad idea:
 – Vary one factor at a time
 – Find best value, fix it
 – Repeat for each factor

• Why is this a bad idea?: too many experiments, will get stuck in local minimum
2^k Factorial Designs

• Experimental technique to find the relative weight of different factors
 – Pick K factors
 – Pick two levels for each factor
 – Behavior of factors must be unidirectional or monotonic in the range explored (!)
Example 2^2 Factorial Design

Observation: can update book examples by multiplying by 1000!

<table>
<thead>
<tr>
<th>Cache size (MB)</th>
<th>Memory size</th>
<th>4GB</th>
<th>16GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>15</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>25</td>
<td>75</td>
</tr>
</tbody>
</table>

Define variables x_A and x_B to represent levels for each factor:

$$x_A = \begin{cases}
-1 & \text{if 4 GB main memory;} \\
1 & \text{if 16 GB main memory.}
\end{cases}$$

$$x_B = \begin{cases}
-1 & \text{if 1 MB cache,} \\
1 & \text{if 2 MB cache.}
\end{cases}$$
Solving the model

A useful fiction: non-linear regression model for performance:

\[y = q_0 + q_{A \times A} + q_{B \times B} + q_{A B \times A \times B} \]

This means we can write:

\[15 = q_0 - q_A - q_B + q_{AB} \]
\[45 = q_0 + q_A - q_B - q_{AB} \]
\[25 = q_0 - q_A + q_B - q_{AB} \]
\[75 = q_0 + q_A + q_B + q_{AB} \]
Relative weights on response variable

Solving:

\[y = 40 + 20x_A + 10x_B + 5x_Ax_B \]

What does this mean?

- Mean performance is 40
- Effect of memory is 20
- Effect of cache is 10
- Interaction between the two accounts for 5
In the form of a table

The same calculation can be done using a sign table:

<table>
<thead>
<tr>
<th>l</th>
<th>A</th>
<th>B</th>
<th>AB</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>45</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>80</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>
Repetitions and errors

• Look in the book
 – How to allocate variation
 – How to consider repetitions of the experiments to look for errors

• For the report, please use repetitions to get meaningful results.