Advanced Systems Lab
Understanding Throughput and Response Time

G. Alonso
Systems Group
http://www.systems.ethz.ch
Open system

- Load comes from a potentially unlimited set of clients
- Load is not limited by clients waiting
- Load is not self-adjusting (load keeps coming even if system stops)
- Tests system’s stability
- Example: web server
Closed system

- Load comes from a limited set of clients
- Clients wait for response before sending next request
- Load is self-adjusting
- System tends to stability
- Example: database with local clients
Example

• Throughput: requests completed per unit of time (secs)
 – count only “successful” requests (no error, < timeout)

• Response Time: time to complete a given task when measured from a well defined start and end points
 – max/min/avg time (secs) to complete a request
 – time for “successful” and completed tasks

These are not absolute values, they depend on the load on the system:
• User Load: number of requests arriving per unit of time (secs)
How does throughput look like

Throughput (req/sec)

User load (req/sec)

Ideal
Real
Throughput Analysis

Throughput (req/sec)

User load (req/sec)

- underload
- saturated
- problems

Ideal
Real

0 10 20 30 40 50 60
How does Response Time look like

Response Time (sec)

User load (req/sec)
Response Time Analysis

Response Time (sec)

- **underload**
- **saturated**
- **problems**

User load (req/sec)

- **Real**
- **Ideal**

Graph showing the relationship between response time and user load.
Interactive Response Time Law

- Users submit a request, when they get a response, they think for a time Z, and submit the next request.
- Applies to measurements in any system under a generic set of conditions.
Interactive, closed systems

- Response time R
- Total cycle time $R+Z$
- Each user generates $\frac{T}{(R+Z)}$ requests in time T
- There are N users

\[
X = \frac{\text{Jobs}}{\text{Time}} = \frac{N}{R+Z} = \frac{T}{T} = \frac{N}{R+Z}
\]

\[
R = \frac{N}{X} - Z
\]
Interactive Law in practice
Interactive law in practice
Interactive law in practice
Warning!

- Real systems are not ideal
 - Not all jobs are equal
 - Not all processing is identical
 - Network effects
 - Processing overhead (not only wait)
 - Exceptions and not “normal” return values
Example

- What is the throughput?
- What is the response time

0.5 jobs/second

Z = 0
Example

- What is the throughput?
- What is the response time?
- Try for 1 clients, 2, 3, 4 ...
- Plot the results
Example

- Throughput is 5.5 j/s
- Response time is \(\frac{2}{5.5} \) 0.36 seconds
- Actual response times are 2 sec for pink jobs and 0.2 sec for green jobs

- Throughput is 5.5 j/s
- Response time is \(\frac{3}{5.5} \) 0.54 seconds
- Actual response times are 4 sec for pink jobs and 0.2 sec for green jobs
One more example

- Client submits 1 pink job and 1 green job, alternating:
 - Throughput = 2 jobs/2.2 sec = 0.9 j/s
 - RT => 1.1 seconds

- Client submits 1 pink job and 2 green jobs, and starts over again:
 - Throughput = 3 jobs/2.4 sec = 1.25 j/s
 - RT => 0.8 seconds

- Client submits 2 pink jobs and 1 green job, and starts over again:
 - Throughput = 3 jobs/4.2 sec = 0.71 j/s
 - RT => 1.4 seconds
Take home message

• What you measure (throughput and/or response time) depends on the workload
• How you submit jobs (and in which order) can make a big difference
• Understanding the performance of your system requires to understand how it works (the inner workings of the system) and the workload you are considering.