Paging concepts

Memory resident page

Pages read in on-demand.

Write pages out to storage.

Write “dirty” pages out to disk.

Read in pages from disk on demand.

Keep track of where pages are on disk.
Too little memory \Rightarrow Throwing
- Allocate more physical memory to the process

Plenty of physical memory
\Rightarrow Adding more doesn't help
Reduce process' quota of physical pages
Belady's Anomaly

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

3 frames:

4 frames:

Number of page faults vs number of frames:

- 3 frames: 9 page faults
- 4 frames: 10 page faults
Page replacement comparison

Saturday, December 22, 2018 12:03 PM

First-In-First-Out:
reference string: 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
page frames: 7 7 7 2 2 2 4 4 4 0 0 0 3 3 3 2 2 2 1 1
 1 0 0 3 3 3 2 2 1
15 page faults

Optimal:
reference string: 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
page frames: 7 7 7 2 2 2 2 2 7
 0 4 0 0 0
 1 3 3 3 1
9 page faults
(impossible without knowing ref. string in advance)

Least Recently Used:
reference string: 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
page frames: 7 7 7 2 2 4 4 4 0 1 1 1
 0 0 3 3 3 2 2 2 2 2
12 page faults
(require every access to be logged => approximate with 2nd-chance (Used)

Paging Page 4
Using a stack to record page references
Thrashing
Saturday, December 22, 2018 12:05 PM

Useful CPU utilization

Demand for virtual memory

Thrashing starts
Working set model

\[\Delta \]

\[WS(t_1) = \{1, 2, 5, 6, 7\} \]

\[\Delta \]

\[WS(t_2) = \{3, 4\} \]