
263-3502-00L Data Processing on Modern Hardware Assignment 4
FS 2012 Out: 2012-10-25
Dr. Jens Teubner, Cagri Balkesen Discussion: 2012-11-15
Department of Computer Science, ETH Zurich

4 (De)compression using on-Chip Vector Processing Units

In main memory column-store databases the columns are often compressed in order to save
RAM and to improve access rates. In this assignment you will speed up decompression of
column values by exploiting data level parallelism in modern CPUs. In particular, you will be
using Streaming SIMD Extensions (SSE) or Advanced Vector Extensions (AVX) if your system
supports it, Single Instruction, Multiple Data (SIMD) instruction set extensions to the x86
architecture, originally designed by Intel.

4.1 SSE and AVX Intrinsics

To make use of SSE you do not need to write inline assembly code. GCC as well as Microsoft
and Intel’s C compilers implement special intrinsics1 that map to the x86 SIMD instructions. As
opposed to inline assembly, intrinsic functions can be fully accounted for by the compiler when
optimizing your program. The C intrinsic functions and SSE or AVX assembly instructions
are documented in the following manuals: http://www.intel.com/content/www/us/en/

processors/architectures-software-developer-manuals.html. Especially interesting
are volumes 2A and 2B. At the end of volume 2B you can find a list of all available intrinsics.

Moreover, “Intel Intrinsic Guide”, an interactive GUI tool that allows searching and looking
up of Intel’s SIMD instructions. The guide also provides descriptions for each instruction, data
type support as well as the intrinsic mnemonics. This tool would be very helpful while working
on this assignment and highly suggested to be used by everyone. The tool can be downloaded
from the following website: http://software.intel.com/en-us/avx

4.2 Warm-up Exercise

To get you started we have prepared a warm-up exercise for you that should help you get
familiar with the SSE intrinsic functions. Please go to the course website and download
the skeleton C code: http://www.systems.ethz.ch/sites/default/files/file/dpmh_

Fall2012/src-handout-04_tar.bz2

Open the file compareandcount.c. You will find a simple C program that does the following:

1. An array is populated with 100 million numbers chosen randomly from the interval [0,99].

2. Then the program counts how many values in that array are larger than 42.

3. Finally, execution time for the computation is measured and displayed.

Your job is to speed up the scanning and counting of values > 42 as much as possible using
SSE intrinsics. The relevant header files (xmmintrin.h → SSE, tmmintrin.h → SSSE3,
smmintrin.h → SSE4.1) are already included. When you compile your code do not forget
the flags -mssse3 -msse4 and use an optimization level ≥ O1 (or simply compile with the
provided Makefile).

1Intrinsic functions are functions whose implementation is handled specially by the compiler, avoiding the
overhead of a function call and allowing highly efficient machine instructions to be emitted for that function.

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://software.intel.com/en-us/avx
http://www.systems.ethz.ch/sites/default/files/file/dpmh_Fall2012/src-handout-04_tar.bz2
http://www.systems.ethz.ch/sites/default/files/file/dpmh_Fall2012/src-handout-04_tar.bz2


Assignment 4 2

4.3 Compression in Column Stores

Now that you have completed the warm-up exercise you should be ready to implement SIMD -
accelerated column decompression. This part of the exercise is based on the n-bit fixed-
width frame of reference (FoR) compression that was shown in the lecture and is discussed
in [1]. Nevertheless, we ignore the base value minC of a column and are only interested in
decompressing n-bit fixed-width values into 32-bit integers.

Task

In the archive that you have previously downloaded for this exercise you will find a second
skeleton C code file: compression.c. In this file we have implemented compression and serial
decompression for the following formats: 32-to-8, 32-to-9 and 32-to-7 bin compression. The
default is the simple 32-to-8 bit compression. You can select the other compression variants
using the respective C macros : COMPRESS32TO7, COMPRESS32TO9.

Your task in this exercise is to speed up decompression using SSE intrinsic functions. For that
purpose, please implement the following function bodies in the C program:

1. SIMD decompress8to32(. . .)

2. SIMD decompress9to32(. . .)

3. SIMD decompress7to32(. . .)

You can activate these functions using the SIMD macro provided in the code. While 32-to-8 bit
decompression is rather straightforward 32-to-9 and 32-to-7 can become quite tricky since the
values are no longer aligned on byte boundaries. Please refer to [2]—on which this assignment
is based—for further insight on SIMD decompression techniques.

Note: If the speed-up that you measure is below your expectations, consider not storing the
decompressed values back to memory, i.e., modify the program such that the values are only
read and decompressed, e.g., to compute some aggregate (SUM for instance). Of course, the
validation code will then break but by then you should be confident that your decompression
implementation works appropriately.

References

[1] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing relations and indexes. Data
Engineering, International Conference on, 0:370, 1998.

[2] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander Zeier, and
Jan Schaffner. Simd-scan: Ultra fast in-memory table scan using on-chip vector processing
units. PVLDB, 2(1):385–394, 2009.


	(De)compression using on-Chip Vector Processing Units
	SSE and AVX Intrinsics
	Warm-up Exercise
	Compression in Column Stores


