Part VI

Graphics Processors (GPUs)

I adopted some of this material from a slide set of René Müller (now with IBM Research).
While **general-purpose CPUs** increasingly feature “multi-media” functionality,

- SIMD
- rich instructions
- streaming parallelism

CPUs

- memory model
- programmable shaders

GPUs

- general-purpose instructions
- I/O

graphics processors become increasingly **general-purpose**.
Graphics Pipeline

connectivity information

App → API → Front-End → Transform & Lighting → Geometry & Primitive Assembly → Rasterization

- Frame Buffer
- Raster & Operations
- Fragment Coloring & Texture

- Scissor
- Alpha
- Stencil
- Depth

Test
Graphics Processors

Some tasks in the pipeline lend themselves to in-hardware processing.

- Embarrassingly parallel
- Few and fairly simple operations
- Hardly need to worry about caches, coherency, etc.

Early cards did the end of the pipeline in hardware; today’s cards can do much more.
Toward Programmable GPUs

The programmability of GPUs has improved dramatically.

- hard-coded **fix-function pipeline**
- customization through **parameters**
- programmable **shaders**
 - vertex shader
 - geometry shader
 - fragment shader (fragment: pixel)
- “general-purpose” GPUs (GPGPUs)

Today: C-like languages (e.g., CUDA, OpenCL)
Database Processing in Early GPUs

All screen pixels rendered into **frame buffer**, separated into

- **color** typically an RGB color value
- **depth** depth associated with this pixel; used to distinguish scene items in the front from those in the back
- **stencil** a mask that can be set to only render parts of the screen values.

Idea: (example: predicate on attribute and constant)

- Bring data set into **depth buffer** of the GPU.
- Evaluate comparison as **depth test** (Booleans as **stencil tests**).

In practice, the idea is/was more tricky

- No direct access to GPU buffers from CPU.
 - Write **fragment program** to render texture into depth buffer.
- **Data movement** host ↔ GPU is expensive.
- Limited amounts of **memory** on graphics card.
- Mapping task → GPU program often convoluted.
- Limited support for **data types** and **precision**.
 - Focus on floating-point arithmetics (often with limited precision and/or standards-compliance).

Modern cards and tools ease these problems significantly.
General-Purpose GPUs (GPGPUs)

Original GPU design based on graphics pipeline not flexible enough.

→ geometry shaders idle for pixel-heavy workloads and vice versa
→ unified model with general-purpose cores

Thus: Design inspired by CPUs, but different

Rationale: Optimize for **throughput**, not for **latency**.
CPUs vs. GPUs

CPU: task parallelism
- relatively heavyweight threads
- 10s of threads on 10s of cores
- each thread managed explicitly
- threads run different code

GPU: data parallelism
- lightweight threads
- 10,000s of threads on 100s of cores
- threads scheduled in batches
- all threads run same code
 → SPMD, single program, multiple data
Threads on a GPU

To handle 10,000s of threads efficiently, keep things simple.

- Don’t try to reduce latency, but hide it.
 - Large thread pool rather than caches
 (This idea is similar to SMT in commodity CPUs \(\uparrow\) slide 127.)

- Assume data parallelism and restrict synchronization.
 - Threads and small groups of threads use local memories.
 - Synchronization only within those groups (more later).

- Hardware thread scheduling (simple, in-order).
 - Schedule threads in batches (\(\sim\) “warps”).
OpenCL Computation Model

Host
- copy data
- launch
- work
- wait
- sync
- launch
- work
- wait
- sync
- copy data

Device (GPU)
- Kernel 1
- Kernel 2

- Host system and **co-processor** (GPU is only one possible co-processor.)
- Host triggers
 - data copying
 - host ↔ co-processor,
 - invocations of **compute kernels**.
- Host interface: **command queue**.
A traditional loop

\[
\text{for (i=0; i<nitems; i++)}
\text{do_something(i)};
\]

becomes a \textbf{data parallel kernel invocation} in OpenCL (\(\map\)):

\[
\text{status = clEnqueueNDRangeKernel (}
\text{commandQueue,}
\text{do_something_kernel, ..., &nitems, ...);}
\]

\[
\text{__kernel void do_something_kernel(...) {}
\text{int i = get_global_id(0);}
\text{...;}
\text{}}
\]
Idea: Invoke kernel for each point in a problem domain

- e.g., 1024 × 1024 image, one kernel invocation per pixel; → 1,048,576 kernel invocations (“work items”).
- Don’t worry (too much) about task → core assignment or number of threads created; **runtime** does it for you.
- Problem domain can be 1-, 2-, or 3-dimensional.

- Can pass global parameters to all work item executions.
- Kernel must figure out work item by calling `get_global_id()`.
OpenCL defines a **C99-like** language for compute kernels.

- Compiled **at runtime** to particular core type.
- Additional set of built-in functions:
 - Context (*e.g.*, `get_global_id()`); synchronization.
 - Fast implementations for special math routines.

```c
__kernel void square (__global float *in, __global float *out)
{
    int i = get_global_id(0);
    out[i] = in[i] * in[i];
}
```
Work Items and Work Groups

Work items may be grouped into **work groups**.

- Work groups \(\leftrightarrow\) scheduling batches.
- Synchronization between work items **only** within work groups.
- There is a device-dependent limit on the number of work items per work group (can be determined via `clGetDeviceInfo()`).
- Specify items per group when queuing the kernel invocation.
- All work groups must have same size (within one invocation).

E.g., Problem space: \(800 \times 600\) items (2-dimensional problem).

\(\rightarrow\) Could choose \(40 \times 6, 2 \times 300, 80 \times 5, \ldots\) work groups.
Example: NVIDIA GPUs

NVIDIA GTX 280

- 10 Thread Processing Clusters
- 10×3 Streaming Multiprocessors
- $10 \times 3 \times 8$ Scalar Processor Cores
 → More like ALUs (↗ slide 209)
- Each Multiprocessor:
 - 16k 32-bit registers
 - 16kB shared memory
 - up to 1024 threads
 (may be limited by registers and/or memory)

source: www.hardwaresentcrets.com
Inside a Streaming Multiprocessor

- 8 Scalar Processors (Thread Processors)
 - single-precision floating point
 - 32-bit and 64-bit integer
- 2 Special Function Units
 - sin, cos, log, exp
- Double Precision unit
- 16 kB Shared Memory

- Each Streaming Multiprocessor: up to 1,024 threads.
- GTX 280: 30 Streaming Multiprocessors
 → 30,720 concurrent threads (!)
The third generation SM introduces several architectural innovations that make it not only the most powerful SM yet built, but also the most programmable and efficient.

- 512 High Performance CUDA cores
- Each SM features 32 CUDA processors—a fourfold increase over prior SM designs. Each CUDA processor has a fully pipelined integer arithmetic logic unit (ALU) and floating point unit (FPU).
- Prior GPUs used IEEE 754-1985 floating point arithmetic. The Fermi architecture implements the new IEEE 754-2008 floating-point standard, providing the fused multiply-add (FMA) instruction for both single and double precision arithmetic. FMA improves over a multiply-add (MAD) instruction by doing the multiplication and addition with a single final rounding step, with no loss of precision in the addition. FMA is more accurate than performing the operations separately.
- GT200 implemented double precision FMA. In GT200, the integer ALU was limited to 24-bit precision for multiply operations; as a result, multi-instruction emulation sequences were required for integer arithmetic. In Fermi, the newly designed integer ALU supports full 32-bit precision for all instructions, consistent with standard programming language requirements. The integer ALU is also optimized to efficiently support 64-bit and extended precision operations. Various instructions are supported, including Boolean, shift, move, compare, convert, bit-field extract, bit-reverse insert, and population count.

- 16 Load/Store Units
- Each SM has 16 load/store units, allowing source and destination addresses to be calculated for sixteen threads per clock. Supporting units load and store the data at each address to cache or DRAM.

- 64 KB Shared Memory / L1 Cache
- Uniform Cache

Source: nVidia Fermi White Paper
Scheduling in Batches

- In SM threads are scheduled in units of 32, called **warps**.
- **Warp**: Set of 32 parallel threads that start together at the same program address.

For memory access warps are split into **half-warps** consisting of 16 threads.

- Warps are scheduled with zero-overhead.
- Scoreboard is used to track which warps are ready to execute.

- GTX 280: 32 warps per multiprocessor (1024 threads)
- newer cards: 48 warps per multiprocessor (1536 threads)
SPMD / SIMT Processing

- **SIMT**: Single Instruction, Multiple Threads
- All threads execute the same instruction.
- Threads are split into warps by increasing thread IDs (warp 0 contains thread 0).
- At each time step scheduler selects warp ready to execute \((i.e., all its data are available)\).
- nVidia Fermi: dual issue; issue two warps at once\(^a\)

\(^a\)no dual issue for double-precision instr.
Warps and Latency Hiding

Some runtime characteristics:

- Issuing a warp instruction takes **4 cycles** (8 scalar processors).
- Register write-read latency: **24 cycles**.
- Global (off-chip) memory access: ≈ 400 cycles.

Threads are executed **in-order**.

→ **Hide latencies** by executing other warps when one is paused.
→ Need **enough warps** to fully hide latency.

E.g.,

- Need $\frac{24}{4} = 6$ warps to hide register dependency latency.
- Need $\frac{400}{4} = 100$ instructions to hide memory access latency. If every 8th instruction is a memory access, $\frac{100}{8} \approx 13$ warps would be enough.
Resource Limits

Ideally: 32 warps per multiprocessor (1024 threads)

But: Various resource limits

- limited number of 32-bit **registers** per multiprocessor

 E.g.: 11 registers per thread, 256 threads/items per work group.

 CUDA compute capability 1.1: 8,192 registers per multiprocessor.

 → max. 2 work groups per multiprocessor \((3 \times 256 \times 11 > 8192)\)

- 48 kB **shared memory** per multiprocessor (compute cap. 2.0)

 E.g.: 12 kB per work group

 → max. 4 work groups per multiprocessor

- 8 **work groups** per multiprocessor; max. 512 work items per work group

- Additional constraints: **branch divergence**, **memory coalescing**.

Occupancy calculation (and choice of work group size) is complicated!
Executing a Warp Instruction

Within a warp, all threads execute same instructions.

→ What if the code contains branches?

```c
if (i < 42)
    then_branch();
else
    else_branch();
```

- If one thread enters the branch, all threads have to execute it.
 → Effect of branch execution discarded if necessary.
 ~ Predicated execution (↗ slide 103).

- This effect is called branch divergence.

- Worst case: all 32 threads take a different code path.
 → Threads are effectively executed sequentially.
OpenCL Memory Model

- **Compute Device**
 - **Compute Unit 1**
 - **Private Memory**
 - **Work Item 1**
 - **Work Item 2**
 - **Local Memory**
 - **Compute Unit 2**
 - **Private Memory**
 - **Work Item 1**
 - **Work Item 2**
 - **Local Memory**

- **Global Memory**

- **Host**
 - **Host Memory**
NVIDIA/Cuda uses a slightly different terminology:

<table>
<thead>
<tr>
<th>OpenCL</th>
<th>Cuda</th>
</tr>
</thead>
<tbody>
<tr>
<td>private memory</td>
<td>registers</td>
</tr>
<tr>
<td>local memory</td>
<td>shared memory</td>
</tr>
<tr>
<td>global memory</td>
<td>global memory</td>
</tr>
</tbody>
</table>

On-chip memory is **significantly** faster than off-chip memory.
Like in CPU-based systems, GPUs access global memory in chunks (32-bit, 64-bit, or 128-bit segments).

→ Most efficient if accesses by threads in a half-warp coalesce.

E.g., NVIDIA cards with compute capability 1.0 and 1.1:

- Coalesced access → 1 memory transaction

- Misaligned → 16 memory transactions (2 if comp. capability ≥ 1.2)
Coalescing Example

Example to demonstrate coalescing effect:

__kernel void
copy(__global unsigned int *din,
 __global unsigned int *dout,
 const unsigned int offset)
{
 int i = get_global_id(0);
 dout[i] = din[i + offset];
}

Strided access causes similar problems!
Shared memory (OpenCL: “local memory”):

- **fast** on-chip memory (few cycles latency)
- throughput: **38–44 GB/s per multiprocessor(!)**

- partitioned into **16 banks**
 - 16 threads (1 half-warp) can access shared memory simultaneously **if and only if** they all access a different bank.
 - Otherwise a **banking conflict** will occur.

- Conflicting accesses are **serialized**
 - (potentially significant) **performance impact**
Bank Conflicts to Shared Memory

stride width: 1 word

→ no bank conflicts

→ no bank conflicts
Bank Conflicts to Shared Memory (cont.)

stride width: 2 words

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 Thread 8 Thread 9 Thread 10 Thread 11 Thread 12 Thread 13 Thread 14 Thread 15
Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7 Bank 8 Bank 9 Bank 10 Bank 11 Bank 12 Bank 13 Bank 14 Bank 15

→ 2-way bank conflicts

stride width: 4 words

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 Thread 8 Thread 9 Thread 10 Thread 11 Thread 12 Thread 13 Thread 14 Thread 15
Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7 Bank 8 Bank 9 Bank 10 Bank 11 Bank 12 Bank 13 Bank 14 Bank 15

→ 4-way bank conflicts
Exception: Broadcast Reads

Broadcast reads do not lead to a bank conflict.

- All threads must read the same word.
Thread Synchronization

Threads may use built-in functions to synchronize within work groups.

- `barrier(flags)` Block until all threads in the group have reached the barrier. Also enforces memory ordering.

- `mem_fence(flags)` Enforce memory ordering: all memory operations are committed before thread continues.

```c
for(unsigned int i = 0; i < n; i++)
{
    do_something();
    barrier(CLK_LOCAL_MEM_FENCE);
}
```

If barrier occurs in a `branch`, same branch must be taken by all `threads` in the group (danger: deadlocks or unpredictable results).
Synchronization Across Work Groups

To synchronize across work groups,

- use **in-order** command queue and queue multiple kernel invocations from the host side
 → Can also queue **markers** and **barriers** to the command queue.

 or

- use OpenCL **event mechanism**.
 → Can also synchronize host ↔ device and kernel executions in **multiple command queues**.

To wait on host side until all queued commands have been completed, use `clFinish(command queue)`.
To summarize,

- GPUs provide **high degrees of parallelism** that can be programmed using a **high-level language**.

But:

- GPUs are not simply “multi-core processors.”
- Unleashing their performance requires significant efforts and great care for details.

Also note that

- GPUs provide lots of **Giga-FLOPS**.
 - But rather few applications really need raw GFLOPS.