Parallel and Distributed Deep Learning
Where is Deep Learning used?

- Digit Recognition
- Object Classification
- Segmentation
- Image Captioning
- Gameplay AI
- Translation
- Neural Computers
- Routing

Timeline:
- 1989
- 2012
- 2013
- 2014
- 2016
- 2017
Why Scale Up?

- Enormous amounts of data
 - MSCOCO: 19 GB
 - ImageNet (1k): 180 GB
 - ImageNet (22k): A few TB
 - Industry: Much larger

- Large neural network architectures
 - 100-200 layers deep today, ~100M-2B parameters

- Faster prototyping
 - Training time: 10s of hours to days (and weeks)
Neural Networks
Neural Networks

- Modeled after the human brain
- CNNs repeatedly perform convolutions and nonlinearity operations

Source: Lee et al. “Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks” (CACM 2011)
Simple CNN Architecture

Images → Multi-Convolution → Pooling → Fully Connected → Loss

1 7 5 3
5 3 9 2
4 5 0 0

=1 =7 =5 =3
=5 =3 =9 =2
=4 =5 =0 =0
GoogLeNet [Szegedy et al., 2014]

- ~6.8M parameters
- 22 layers deep

ResNet [He et al., 2016]

- ~2.35M parameters
- 152 layers deep

Stochastic Gradient Descent

- **Gist**: Improve network weights using samples from a labeled dataset

- **Algorithm**:
 - Initialize neural network weights \(W_0 \)
 - For \(t \) in iterations:
 - **Sample** \(b \) images from dataset \(B \)
 - **Compute** loss \(L_t(W_{t-1}, B) \)
 - **Update** weights using gradients and update rule \(g \):
 \[
 W_t = g(W_{t-1}, \nabla L_t(W_{t-1}, B), [\text{hyperparameters} ...])
 \]

- \(\nabla L_t(W, B) \) is an average direction of the gradient over a mini-batch of size \(b \):
 \[
 \nabla L_t(W, B) = \frac{1}{b} \sum_{i=1}^{b} \nabla \ell(W; (x_i, y_i))
 \]
Backpropagation Algorithm

- A CNN is a Directed Acyclic Graph (DAG)

- At each layer in backpropagation, derivatives are estimated w.r.t.:
 - Layer parameters (if necessary)
 - Data (chain rule)
Backpropagation Algorithm

- A CNN is a Directed Acyclic Graph (DAG)

- At each layer in backpropagation, derivatives are estimated w.r.t.:
 - Layer parameters (if necessary)
 - Data (chain rule)

- Additional memory storage required for training:
 - D+W+ ∇D+ ∇W
The World of Neural Network Acceleration

- Choice of Algorithm
- Parallelism
- Distributed Computing
- Hardware Architectures
The World of Neural Network Acceleration

- Choice of Algorithm
- Parallelism
- Distributed Computing
- Hardware Architectures
The World of Neural Network Acceleration

- Choice of Algorithm
- Parallelism
- Distributed Computing
- Hardware Architectures
The World of Neural Network Acceleration

- Choice of Algorithm
- Parallelism
- Distributed Computing
- Hardware Architectures
The World of Neural Network Acceleration

- Choice of Algorithm
- Parallelism
- Distributed Computing
- Hardware Architectures
Algorithms
Convolution Algorithms

- Most computationally-intensive layer

\[
\text{out}(x, y)_{f_o} = \sum_{f_t=0}^{N_{if}} \sum_{k_x=0}^{K_x} \sum_{k_y=0}^{K_y} w_{f_i,f_o}(k_x, k_y) \ast \text{in}(x + k_x, y + k_y)_{f_i}
\]

- Can be performed directly, or:
 - Via matrix multiplication (im2col) [Chellapilla et al., 2006]
 - Via Winograd convolution [Lavin and Gray, 2016]
 - In Fourier domain

Sources:
Convolution in Fourier Domain

- Convolution can be computed using FFT [Mathieu et al., 2014]:

\[y(s, j) = \sum_{i \in f} x(s, i) \ast w(j, i) = \sum_{i \in f} F^{-1} \left(F(x(s, i)) \circ F(w(j, i))^* \right) \]

- The larger the convolution kernel, the better the performance [Vasilache et al., 2015]:

Mathieu et al. “Fast Training of Convolutional Networks through FFTs”, ICLR 2014
Sacrificing Accuracy for Performance

- Half-precision (16-bit floating point) [Gupta et al., 2015]
 - Memory is stored in 16-bit format
 - Computations are performed in 32-bits
 - Uses Stochastic Rounding:

\[
\text{Round}(x, (\text{IL}, \text{FL})) = \begin{cases}
\lfloor x \rfloor & \text{w.p. } 1 - \frac{x - \lfloor x \rfloor}{\epsilon} \\
\lfloor x \rfloor + \epsilon & \text{w.p. } \frac{x - \lfloor x \rfloor}{\epsilon}
\end{cases}
\]

Goal: Preserve \(\mathbb{E}(\text{Round}(x, (\text{IL}, \text{FL}))) = x \)

Sacrificing Accuracy for Performance

- Results on MNIST with LeNet:

WL=Word Length (bits)
FL=Fractional Length (bits)

Data Parallelism

Images → Multi-Convolution → Pooling → Fully Connected → Loss
Data Parallelism

Proc. 1

Proc. 2

Proc. 3

Images → Multi-Convolution → Pooling → Fully Connected → Loss
Data Parallelism

- Good for forward pass (independent)

- Backpropagation requires all-to-all communication only when accumulating results

- Requires allocation of all parameters on each processor
Model Parallelism
Model Parallelism
Model Parallelism

✓ Parameters can be divided across processors

✗ Mini-batch has to be copied to all processors

✗ Backpropagation requires all-to-all communication every layer
Hybrid Data/Model Parallelism

- Conjecture[Krizhevsky, 2014]: Most of the computations are performed in the convolutional portion, most of the parameters are stored in the fully connected portion.

- Proposed Solution: Use data parallelism on convolutional portion and model parallelism on the FC portion.

Hybrid Data/Model Parallelism [Krizhevsky, 2014]

Hybrid Data/Model Parallelism Results

- AlexNet, ILSVRC 2012:

<table>
<thead>
<tr>
<th>GPUs</th>
<th>Batch size</th>
<th>Top-1 error</th>
<th>Time</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(128, 128)</td>
<td>42.33%</td>
<td>98.05h</td>
<td>1x</td>
</tr>
<tr>
<td>2</td>
<td>(256, 256)</td>
<td>42.63%</td>
<td>50.24h</td>
<td>1.95x</td>
</tr>
<tr>
<td>2</td>
<td>(256, 128)</td>
<td>42.27%</td>
<td>50.90h</td>
<td>1.93x</td>
</tr>
<tr>
<td>4</td>
<td>(512, 512)</td>
<td>42.59%</td>
<td>26.20h</td>
<td>3.74x</td>
</tr>
<tr>
<td>4</td>
<td>(512, 128)</td>
<td>42.44%</td>
<td>26.78h</td>
<td>3.66x</td>
</tr>
<tr>
<td>8</td>
<td>(1024, 1024)</td>
<td>43.28%</td>
<td>15.68h</td>
<td>6.25x</td>
</tr>
<tr>
<td>8</td>
<td>(1024, 128)</td>
<td>42.86%</td>
<td>15.91h</td>
<td>6.16x</td>
</tr>
</tbody>
</table>

Distributed Computing
Distributed Deep Learning

- Runs on a computer cluster
- Each node runs partially autonomously
- Inter-node communication from time to time
- Best result is gathered from the nodes
- Training data can be split to per-node “shards”
Distributed Deep Learning – Opportunities

- Increased memory:
 - More data
 - More parameters

- Fault tolerance
 - Protection against node crashes

- Improved stochasticity
Distributed Deep Learning – Determining Factors

- Computational independence
- Communication efficiency
- Network congestion
- Load balancing
- Points of failure
Distributed Synchronous SGD

- Communication step is added to the algorithm:
 - Initialize neural network weights (W_0)
 - For t in iterations:
 - Sample b images from dataset (B)
 - Compute loss $L_t(W_{t-1}, B)$
 - **Synchronize weights across workers**
 - Update weights using gradients and update rule g

- The step requires all nodes to have the same data ($\sum \nabla W$)
 - This collective operation is also called AllReduce

- Different ways to implement, depending on message size and network topology
Distributed Deep Learning – DistBelief

- Distributed learning infrastructure used at Google [Dean et al., 2012]

- Each model replica has the same parameters, but optimizes different data
 - Replicas are divided among several machines

- Two distributed optimization schemes for training:
 - Online – Downpour SGD
 - Batch – Sandblaster LBFGS

- Uses a centralized parameter server (several machines, sharded)

- Handles slow and faulty replicas

Dean et al. "Large scale distributed deep networks." *NIPS 2012.*
Asynchronous SGD – HOGWILD!

- To achieve coherency in distributed SGD, nodes must synchronize w.r.t. parameters:
 - Each thread draws a random example \(i \) from the training data.
 - Acquire a lock on the current state of parameters \(\theta \).
 - Thread reads \(\theta \).
 - Thread updates \(\theta \leftarrow (\theta - \alpha \nabla L(f_{\theta}(x_i), y_i)) \).
 - Release lock on \(\theta \).

- **HOGWILD!** [Niu et al., 2011] removes this synchronization:

 Each thread draws a random example \(i \) from the training data.
 - Thread reads current state of \(\theta \).
 - Thread updates \(\theta \leftarrow (\theta - \alpha \nabla L(f_{\theta}(x_i), y_i)) \).

Asynchronous SGD – HOGWILD!

- **HOGWILD!**:
 - Proven to converge in sparse problems
 - Provides near-linear scaling
 - Assumes shared-memory architecture (e.g., multicore CPUs)

- Formulates ML problems as hypergraphs \(G = (V, E) \) where:
 - \(w^* = \arg\min_w f(w) = \arg\min_w \sum_{e \in E} f_e(w_e) \)
 - Each hyperedge \(e \in E \) represents subsets of \([n]\)
 - \(w_e \) is reduced to coordinates in \(e \)

Source: Wikipedia

Distributed Deep Learning – Downpour SGD

- Relaxation of HOGWILD! for distributed systems
- Algorithm:
 - Divide training data into subsets and run a replica on each subset
 - Every n_{fetch} iterations, fetch up-to-date parameters from server
 - Every n_{push} iterations, push local gradients to server

- Note that parameter shards may be “out-of-sync”

Dean et al. "Large scale distributed deep networks." *NIPS* 2012.
Distributed Deep Learning – Sandblaster LBFGS

- Coordinator process issues commands (dot product, scaling, multiplication, etc.) to slave nodes, each processing a different parameter shard

- Communication is sparser
 - Most of the information is stored locally
 - Coordinator messages are small
 - Slaves fetch parameters at the beginning of each batch, send gradients once in a while for fault tolerance

- Employs computation replication and load balancing
 - Nodes that finish their job get more jobs
 - If one node is slow, additional nodes get the same job

Dean et al. "Large scale distributed deep networks." NIPS 2012.
DistBelief Results – Time

Dean et al. "Large scale distributed deep networks." *NIPS* 2012.
DistBelief Results – Accuracy

Dean et al. "Large scale distributed deep networks." *NIPS* 2012.
Project Adam

- Extends DistBelief with system-level support
 - Fast data serving mechanisms (e.g., with augmentation)
 - Better heterogeneous system management
 - Parameter server node optimization

- Bottom-up communication redesign
 - Control message, data message separation
 - Inter-node communication reduction
 - Weight differences are sent instead of weights

- Only system to train ImageNet22k

Hardware
Specialized Hardware

- **GPU**
 - Thousands of cores, massively parallel (5-14 TFLOP/s per card)
 - Multi-GPU nodes further increase training performance (using data/model parallelism)
 - Drawback: Hard to program efficiently. Solution: Specialized libraries (CUDNN)

- **FPGA**
 - Specialized for certain operations (e.g. convolutions)
 - Drawbacks: Even harder to program

- Convolutional Processing Units
Deep Learning with GPUs

- A distributed GPU-based system [Coates et al., 2013] was shown to run DistBelief-scale problems (1000 machines) with 3 multi-GPU nodes
- 3 tiers of concurrency: GPU, model parallelism, nodes

Time for a single mini-batch gradient update of a sparse autoencoder

Specialized Hardware

- Two approaches:

 - Mapping neurons to hardware
 - Custom processing elements
Specialized Hardware – ANNA

ANNA: Analog-Digital ConvNet Accelerator Chip (Bell Labs)

- 4096 Multiply-Accumulate operators
- 6 bit weights, 4 bit states
- 20 MHz clock
- Shift registers for efficient I/O with convolutions
- 4 GOPS (peak)
- 1000 characters per second for OCR with ConvNet.

Source: Yann LeCun
Specialized Hardware – DianNao

- Instead of building the neural network on a circuit, creates a Neural Function Unit (NFU)

- Operations reflect the different layers

- Each operation (conv., pooling, FC) takes up to three stages at computations (or less)
 - Computation
 - Reduction
 - Activation

Conclusions

- Many acceleration opportunities
- Architectures keep changing, and with them new techniques arise
- Algorithms can be modified (to some extent)
 - Proven “shortcuts” can be taken
Questions?